|
import logging |
|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
logging.info("Initializing EndpointHandler with model path: %s", path) |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
self.model = AutoModelForCausalLM.from_pretrained(path) |
|
self.tokenizer = tokenizer |
|
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)]) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
logging.info("Starting inference") |
|
inputs = data.pop("inputs", data) |
|
additional_bad_words_ids = data.pop("additional_bad_words_ids", []) |
|
|
|
|
|
logging.info("Encoding inputs") |
|
input_ids = self.tokenizer.encode(inputs, return_tensors="pt") |
|
logging.info("Input IDs shape: %s", input_ids.shape) |
|
|
|
max_generation_length = 75 |
|
max_input_length = 4092 - max_generation_length |
|
|
|
|
|
|
|
|
|
|
|
|
|
bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889], [29898, 1068], [3253, 29885, 4430, 29889]] |
|
bad_words_ids.extend(additional_bad_words_ids) |
|
|
|
|
|
if input_ids.shape[1] > max_input_length: |
|
logging.info("Truncating input IDs to fit within max input length") |
|
input_ids = input_ids[:, -max_input_length:] |
|
|
|
max_length = input_ids.shape[1] + max_generation_length |
|
|
|
logging.info("Generating output") |
|
generated_ids = self.model.generate( |
|
input_ids, |
|
max_length=max_length, |
|
bad_words_ids=bad_words_ids, |
|
temperature=0.5, |
|
top_k=40, |
|
do_sample=True, |
|
stopping_criteria=self.stopping_criteria, |
|
) |
|
logging.info("Finished generating output") |
|
|
|
generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}] |
|
logging.info("Inference complete") |
|
return prediction |
|
|
|
class StopAtPeriodCriteria(StoppingCriteria): |
|
def __init__(self, tokenizer): |
|
self.tokenizer = tokenizer |
|
|
|
def __call__(self, input_ids, scores, **kwargs): |
|
last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True) |
|
logging.info("StopAtPeriodCriteria called. Last token text: '%s'", last_token_text) |
|
return '.' in last_token_text |
|
|