|  | """ | 
					
						
						|  | Pico Decoder: A Lightweight Causal Transformer Language Model | 
					
						
						|  |  | 
					
						
						|  | Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes. | 
					
						
						|  |  | 
					
						
						|  | Everything is written with a modular design for easy modification and experimentation. | 
					
						
						|  |  | 
					
						
						|  | Key features: | 
					
						
						|  | - RMSNorm for layer normalization | 
					
						
						|  | - Rotary Positional Embeddings (RoPE) | 
					
						
						|  | - Multi-head attention with KV-cache support | 
					
						
						|  | - SwiGLU activation function | 
					
						
						|  | - Residual connections throughout | 
					
						
						|  |  | 
					
						
						|  | - KV-cache for faster autoregressive generation | 
					
						
						|  |  | 
					
						
						|  | References: | 
					
						
						|  | - RoPE: https://arxiv.org/abs/2104.09864 | 
					
						
						|  | - SwiGLU: https://arxiv.org/abs/2002.05202 | 
					
						
						|  | - LLAMA: https://arxiv.org/abs/2302.13971 | 
					
						
						|  |  | 
					
						
						|  | Adapted from: | 
					
						
						|  | - OLMO: https://github.com/allenai/OLMo | 
					
						
						|  | - LLAMA: https://github.com/meta/llama | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch.nn.attention import sdpa_kernel, SDPBackend | 
					
						
						|  |  | 
					
						
						|  | from dataclasses import asdict | 
					
						
						|  |  | 
					
						
						|  | from transformers import PretrainedConfig, PreTrainedModel | 
					
						
						|  | from transformers.modeling_outputs import CausalLMOutputWithPast, CausalLMOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from typing import Union, Tuple, Optional, TYPE_CHECKING, Dict, Any | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | if TYPE_CHECKING: | 
					
						
						|  |  | 
					
						
						|  | from src.config import ModelConfig | 
					
						
						|  | except ImportError: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RMSNorm(torch.nn.Module): | 
					
						
						|  | """Root Mean Square Layer Normalization. | 
					
						
						|  |  | 
					
						
						|  | A variant of Layer Normalization that uses RMS statistics instead of mean/variance, | 
					
						
						|  | resulting in improved stability and performance. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters | 
					
						
						|  | - config.norm_eps: Small constant for numerical stability | 
					
						
						|  | - config.d_model: Model dimension for the weight parameter | 
					
						
						|  |  | 
					
						
						|  | References: | 
					
						
						|  | https://arxiv.org/abs/1910.07467 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.eps = config.norm_eps | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(config.d_model)) | 
					
						
						|  |  | 
					
						
						|  | def _norm(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Normalizes the input tensor by its RMS value. | 
					
						
						|  | """ | 
					
						
						|  | return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Applies RMS normalization to the input tensor and scales it by the weight parameter. | 
					
						
						|  | """ | 
					
						
						|  | output = self._norm(x.float()).type_as(x) | 
					
						
						|  | return output * self.weight | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RoPE(nn.Module): | 
					
						
						|  | """Rotary Positional Embeddings (RoPE). | 
					
						
						|  |  | 
					
						
						|  | Implements position-dependent rotation of keys and queries in attention mechanism, | 
					
						
						|  | allowing better modeling of relative positions in sequences. Uses complex number | 
					
						
						|  | operations for efficient rotation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (Union[ModelConfig, PicoHFConfig]): Model configuration containing: | 
					
						
						|  | - config.position_emb_theta: Base for frequency computation | 
					
						
						|  | - config.d_model: Model dimension | 
					
						
						|  | - config.attention_n_heads: Number of attention heads | 
					
						
						|  | - config.max_seq_len: Maximum sequence length | 
					
						
						|  |  | 
					
						
						|  | References: | 
					
						
						|  | https://arxiv.org/abs/2104.09864 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _freqs_cis_tensor: torch.Tensor | None = None | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.theta = config.position_emb_theta | 
					
						
						|  | self.dim = config.d_model // config.attention_n_heads | 
					
						
						|  |  | 
					
						
						|  | max_seq_len = config.max_seq_len | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if RoPE._freqs_cis_tensor is None: | 
					
						
						|  | RoPE._freqs_cis_tensor = self._setup_freqs_cis( | 
					
						
						|  | max_seq_len, self.theta, self.dim | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor: | 
					
						
						|  | """Setup Frequency Tensor for RoPE Embeddings | 
					
						
						|  |  | 
					
						
						|  | Initializes the complex frequency tensor that is used to compute the RoPE embeddings. | 
					
						
						|  |  | 
					
						
						|  | Note other implementations will use cos and sin directly, but using the complex | 
					
						
						|  | number representation is (probably?) more efficient: | 
					
						
						|  |  | 
					
						
						|  | e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula] | 
					
						
						|  | """ | 
					
						
						|  | _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | 
					
						
						|  | positions = torch.arange(seq_len) | 
					
						
						|  | freqs = torch.outer(positions, _freqs) | 
					
						
						|  | return torch.polar(torch.ones_like(freqs), freqs) | 
					
						
						|  |  | 
					
						
						|  | def get_freqs_cis( | 
					
						
						|  | self, input_shape: torch.Size, start_pos: int, end_pos: int | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """Reshape Frequency Tensor for RoPE Embeddings | 
					
						
						|  |  | 
					
						
						|  | Makes the frequency tensor broadcastable with the input tensor. | 
					
						
						|  | """ | 
					
						
						|  | _freqs_cis = self._freqs_cis[start_pos:end_pos] | 
					
						
						|  | ndim = len(input_shape) | 
					
						
						|  | assert 0 <= 1 < ndim | 
					
						
						|  | assert _freqs_cis.shape == (input_shape[1], input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)] | 
					
						
						|  | return _freqs_cis.view(*shape) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | queries: torch.Tensor, | 
					
						
						|  | keys: torch.Tensor, | 
					
						
						|  | start_pos: int = 0, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """Apply RoPE Embeddings to Queries and Keys | 
					
						
						|  |  | 
					
						
						|  | Applies the rotary positional embeddings to the input tensors via complex num multiplication | 
					
						
						|  |  | 
					
						
						|  | NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism. | 
					
						
						|  | """ | 
					
						
						|  | queries_ = torch.view_as_complex( | 
					
						
						|  | queries.float().reshape(*queries.shape[:-1], -1, 2) | 
					
						
						|  | ) | 
					
						
						|  | keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2)) | 
					
						
						|  |  | 
					
						
						|  | input_shape = ( | 
					
						
						|  | queries_.shape | 
					
						
						|  | ) | 
					
						
						|  | freqs_start_pos = start_pos | 
					
						
						|  | freqs_end_pos = freqs_start_pos + queries_.shape[1] | 
					
						
						|  |  | 
					
						
						|  | freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos) | 
					
						
						|  |  | 
					
						
						|  | queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3) | 
					
						
						|  | keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3) | 
					
						
						|  | return queries_rotated.type_as(queries), keys_rotated.type_as(keys) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Attention(nn.Module): | 
					
						
						|  | """Multi-head Attention with Group Query Attention support. | 
					
						
						|  |  | 
					
						
						|  | Implements scaled dot-product attention and supports: | 
					
						
						|  | - Grouped Query Attention (GQA) | 
					
						
						|  | - Key-Value caching for efficient inference | 
					
						
						|  | - RoPE integration | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (Union[ModelConfig, PretrainedConfig]): Configuration containing: | 
					
						
						|  | - config.attention_n_heads: Number of attention heads | 
					
						
						|  | - config.attention_n_kv_heads: Number of key/value heads | 
					
						
						|  | - config.d_model: Model dimension | 
					
						
						|  | - config.batch_size: Maximum batch size | 
					
						
						|  | - config.max_seq_len: Maximum sequence length | 
					
						
						|  |  | 
					
						
						|  | Shape: | 
					
						
						|  | - Input: (batch_size, seq_len, d_model) | 
					
						
						|  | - Output: (batch_size, seq_len, d_model) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: Union["ModelConfig", "PicoDecoderHFConfig"], | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.n_heads = config.attention_n_heads | 
					
						
						|  | self.n_kv_heads = config.attention_n_kv_heads | 
					
						
						|  |  | 
					
						
						|  | self.batch_size = config.batch_size | 
					
						
						|  | self.max_seq_len = config.max_seq_len | 
					
						
						|  |  | 
					
						
						|  | d_model = config.d_model | 
					
						
						|  | self.head_dim = d_model // self.n_heads | 
					
						
						|  |  | 
					
						
						|  | self.n_rep = self.n_heads // self.n_kv_heads | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False) | 
					
						
						|  | self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False) | 
					
						
						|  | self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False) | 
					
						
						|  | self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.rope = RoPE(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input: torch.Tensor, | 
					
						
						|  | mask: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[torch.Tensor, ...]] = None, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | 
					
						
						|  | """Forward pass for the attention mechanism. | 
					
						
						|  |  | 
					
						
						|  | Computes queries, keys, and values for the attention mechanism. Applies rotary positional | 
					
						
						|  | embeddings to the queries and keys, and then computes attention scores and outputs. | 
					
						
						|  |  | 
					
						
						|  | For an introduction to the attention mechanism, see: | 
					
						
						|  | https://arxiv.org/abs/1706.03762 | 
					
						
						|  |  | 
					
						
						|  | A few things to note: | 
					
						
						|  | - The past_key_values is used to implement the KV cache, which is used to speed up | 
					
						
						|  | generation by caching the KV pairs from previous forward passes. This is useful when doing | 
					
						
						|  | tasks that require generating multiple tokens conditioned on previous tokens (e.g. language | 
					
						
						|  | modeling, text generation, etc.). The way the KV cache is implemented is that each layer has | 
					
						
						|  | its own KV cache - this KV cache is implemented as a tuple. | 
					
						
						|  | """ | 
					
						
						|  | bsz, seq_len, _ = input.shape | 
					
						
						|  | _queries, _keys, _values = ( | 
					
						
						|  | self.q_proj(input), | 
					
						
						|  | self.k_proj(input), | 
					
						
						|  | self.v_proj(input), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim) | 
					
						
						|  | keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim) | 
					
						
						|  | values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | queries, keys = self.rope(queries, keys, start_pos) | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | keys = torch.cat([past_key_values[0], keys], dim=1) | 
					
						
						|  | values = torch.cat([past_key_values[1], values], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | cached_keys = keys | 
					
						
						|  | cached_values = values | 
					
						
						|  | else: | 
					
						
						|  | cached_keys = None | 
					
						
						|  | cached_values = None | 
					
						
						|  |  | 
					
						
						|  | queries = queries.transpose(1, 2) | 
					
						
						|  | keys = keys.transpose(1, 2) | 
					
						
						|  | values = values.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | apply_gqa = self.n_rep > 1 | 
					
						
						|  | if apply_gqa and queries.device.type == "mps": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keys = keys.repeat_interleave(self.n_rep, dim=-3) | 
					
						
						|  | values = values.repeat_interleave(self.n_rep, dim=-3) | 
					
						
						|  | apply_gqa = False | 
					
						
						|  |  | 
					
						
						|  | backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH] | 
					
						
						|  |  | 
					
						
						|  | with sdpa_kernel(backends=backends): | 
					
						
						|  | attn_output = F.scaled_dot_product_attention( | 
					
						
						|  | queries.contiguous(), | 
					
						
						|  | keys.contiguous(), | 
					
						
						|  | values.contiguous(), | 
					
						
						|  | attn_mask=mask.to(queries.dtype), | 
					
						
						|  | enable_gqa=apply_gqa, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1) | 
					
						
						|  | output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return output, (cached_keys, cached_values) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SwiGLU(nn.Module): | 
					
						
						|  | """SwiGLU Activation Function with Linear Projections. | 
					
						
						|  |  | 
					
						
						|  | Implements the SwiGLU activation function combined with linear transformations, | 
					
						
						|  | serving as the feed-forward network in transformer blocks. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing: | 
					
						
						|  | - config.d_model: Model dimension | 
					
						
						|  | - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model) | 
					
						
						|  |  | 
					
						
						|  | References: | 
					
						
						|  | https://arxiv.org/abs/2002.05202 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | model_dim = config.d_model | 
					
						
						|  | act_hidden_dim = config.activation_hidden_dim | 
					
						
						|  |  | 
					
						
						|  | self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False) | 
					
						
						|  | self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False) | 
					
						
						|  | self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.w_2(F.silu(self.w_0(x)) * self.w_1(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PicoDecoderBlock(nn.Module): | 
					
						
						|  | """Single Transformer Block with Attention and Feed-forward layers. | 
					
						
						|  |  | 
					
						
						|  | Implements a standard transformer block with: | 
					
						
						|  | - Multi-head attention with normalization and residual connection | 
					
						
						|  | - SwiGLU feed-forward network with normalization and residual connection | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or | 
					
						
						|  | a HuggingFace PicoDecoderHFConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: Union["ModelConfig", "PicoDecoderHFConfig"], | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.attention = Attention(config) | 
					
						
						|  | self.swiglu = SwiGLU(config) | 
					
						
						|  | self.attention_norm = RMSNorm(config) | 
					
						
						|  | self.swiglu_norm = RMSNorm(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input: torch.Tensor, | 
					
						
						|  | mask: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | 
					
						
						|  | attention_output, cached_key_values = self.attention( | 
					
						
						|  | self.attention_norm(input), | 
					
						
						|  | mask=mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | h = input + attention_output | 
					
						
						|  | out = h + self.swiglu(self.swiglu_norm(h)) | 
					
						
						|  | return out, cached_key_values | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PicoDecoder(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a | 
					
						
						|  | single autoregressive model. | 
					
						
						|  |  | 
					
						
						|  | For more information on the model, see the classes for the modules that make up the model. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | model_config: Union["ModelConfig", "PicoDecoderHFConfig"], | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = model_config | 
					
						
						|  |  | 
					
						
						|  | self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.output_norm = RMSNorm(self.config) | 
					
						
						|  | self.de_embedding_proj = nn.Linear( | 
					
						
						|  | self.config.d_model, self.config.vocab_size, bias=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def convert_to_hf_model(self) -> "PicoDecoderHF": | 
					
						
						|  | """Convert the Lightning model to a HuggingFace model.""" | 
					
						
						|  |  | 
					
						
						|  | hf_config = PicoDecoderHFConfig.from_dataclass(self.config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hf_model = PicoDecoderHF(hf_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hf_model.load_state_dict(self.state_dict(prefix="pico_decoder.")) | 
					
						
						|  |  | 
					
						
						|  | return hf_model | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.Tensor, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]: | 
					
						
						|  | """ | 
					
						
						|  | This is the forward pass for the entire Pico model. It boils down to: | 
					
						
						|  | - Embedding the input ids | 
					
						
						|  | - Creating a causal mask | 
					
						
						|  | - Processing through the pico layers | 
					
						
						|  | - Projecting the output to logits | 
					
						
						|  |  | 
					
						
						|  | NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up | 
					
						
						|  | generation by caching the KV pairs from previous forward passes. This is useful when doing | 
					
						
						|  | tasks that require generating multiple tokens conditioned on previous tokens (e.g. language | 
					
						
						|  | modeling, text generation, etc.). The way the KV cache is implemented is that each layer has | 
					
						
						|  | its own KV cache which is stored as a tuple. The whole model then stores a tuple of these | 
					
						
						|  | KV caches (so a tuple of tuples). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | seq_len = input_ids.shape[-1] | 
					
						
						|  | h = self.embedding_proj(input_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask = None | 
					
						
						|  | if seq_len > 1: | 
					
						
						|  | mask = torch.full((seq_len, seq_len), float("-inf")) | 
					
						
						|  | mask = torch.triu(mask, diagonal=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  |  | 
					
						
						|  | mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask]) | 
					
						
						|  |  | 
					
						
						|  | mask = mask.to(h.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cached_key_values = () if use_cache else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for idx, layer in enumerate(self.layers): | 
					
						
						|  | layer_past_key_values = ( | 
					
						
						|  | past_key_values[idx] if past_key_values is not None else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | h, layer_cached_key_values = layer( | 
					
						
						|  | h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | cached_key_values += (layer_cached_key_values,) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | h = self.output_norm(h) | 
					
						
						|  | logits = self.de_embedding_proj(h).float() | 
					
						
						|  |  | 
					
						
						|  | return logits, cached_key_values | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | HuggingFace wrapper for the Pico model. | 
					
						
						|  |  | 
					
						
						|  | Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple | 
					
						
						|  | wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal | 
					
						
						|  | Pico model as well as the model wrapped in this HuggingFace class. | 
					
						
						|  |  | 
					
						
						|  | This also lets you do cool things like: | 
					
						
						|  |  | 
					
						
						|  | `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PicoDecoderHFConfig(PretrainedConfig): | 
					
						
						|  | """HuggingFace config for Pico model.""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "pico_decoder" | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pico_config = cls(**kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for key, value in config_dict.items(): | 
					
						
						|  | setattr(pico_config, key, value) | 
					
						
						|  |  | 
					
						
						|  | return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | 
					
						
						|  | unused_kwargs = { | 
					
						
						|  | key: value for key, value in kwargs.items() if not hasattr(pico_config, key) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if return_unused_kwargs: | 
					
						
						|  | return pico_config, unused_kwargs | 
					
						
						|  | return pico_config | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_dataclass(cls, model_config: "ModelConfig"): | 
					
						
						|  | return cls.from_dict(asdict(model_config)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PicoDecoderHF(PreTrainedModel): | 
					
						
						|  | """HuggingFace wrapper for Pico model.""" | 
					
						
						|  |  | 
					
						
						|  | config_class = PicoDecoderHFConfig | 
					
						
						|  | _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PicoDecoderHFConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.pico_decoder = PicoDecoder(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.Tensor, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[CausalLMOutput, CausalLMOutputWithPast]: | 
					
						
						|  | """HuggingFace forward pass wrapper. | 
					
						
						|  |  | 
					
						
						|  | Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the | 
					
						
						|  | Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput. | 
					
						
						|  | """ | 
					
						
						|  | logits, past_key_values = self.pico_decoder( | 
					
						
						|  | input_ids, past_key_values, use_cache | 
					
						
						|  | ) | 
					
						
						|  | if use_cache: | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | return CausalLMOutput( | 
					
						
						|  | logits=logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PicoDecoderHFConfig.register_for_auto_class() | 
					
						
						|  | PicoDecoderHF.register_for_auto_class("AutoModel") | 
					
						
						|  | PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM") | 
					
						
						|  |  |