phunganhsang's picture
End of training
6460f9d verified
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: PhoBert_Lexical_Datasnet51KBoDuoiWithNewLexical
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/phunganhsang123/huggingface/runs/ueje0ytn)
# PhoBert_Lexical_Datasnet51KBoDuoiWithNewLexical
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9059
- Accuracy: 0.848
- F1: 0.8469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|
| No log | 0.2506 | 200 | 0.6421 | 0.727 | 0.7274 |
| No log | 0.5013 | 400 | 0.5851 | 0.745 | 0.7340 |
| No log | 0.7519 | 600 | 0.5522 | 0.758 | 0.7561 |
| 0.3486 | 1.0025 | 800 | 0.5461 | 0.779 | 0.7693 |
| 0.3486 | 1.2531 | 1000 | 0.5009 | 0.786 | 0.7796 |
| 0.3486 | 1.5038 | 1200 | 0.5538 | 0.77 | 0.7681 |
| 0.3486 | 1.7544 | 1400 | 0.5067 | 0.777 | 0.7676 |
| 0.2582 | 2.0050 | 1600 | 0.5031 | 0.792 | 0.7842 |
| 0.2582 | 2.2556 | 1800 | 0.5232 | 0.786 | 0.7811 |
| 0.2582 | 2.5063 | 2000 | 0.5484 | 0.785 | 0.7827 |
| 0.2582 | 2.7569 | 2200 | 0.5155 | 0.798 | 0.7950 |
| 0.2134 | 3.0075 | 2400 | 0.5280 | 0.787 | 0.7847 |
| 0.2134 | 3.2581 | 2600 | 0.5263 | 0.793 | 0.7860 |
| 0.2134 | 3.5088 | 2800 | 0.5273 | 0.794 | 0.7930 |
| 0.2134 | 3.7594 | 3000 | 0.5354 | 0.792 | 0.7871 |
| 0.1799 | 4.0100 | 3200 | 0.5071 | 0.804 | 0.7982 |
| 0.1799 | 4.2607 | 3400 | 0.5655 | 0.802 | 0.7975 |
| 0.1799 | 4.5113 | 3600 | 0.5497 | 0.809 | 0.8034 |
| 0.1799 | 4.7619 | 3800 | 0.5645 | 0.808 | 0.8020 |
| 0.1493 | 5.0125 | 4000 | 0.5565 | 0.807 | 0.8003 |
| 0.1493 | 5.2632 | 4200 | 0.5861 | 0.813 | 0.8091 |
| 0.1493 | 5.5138 | 4400 | 0.6189 | 0.807 | 0.8055 |
| 0.1493 | 5.7644 | 4600 | 0.5003 | 0.819 | 0.8151 |
| 0.1278 | 6.0150 | 4800 | 0.5903 | 0.81 | 0.8080 |
| 0.1278 | 6.2657 | 5000 | 0.6112 | 0.81 | 0.8090 |
| 0.1278 | 6.5163 | 5200 | 0.5987 | 0.818 | 0.8150 |
| 0.1278 | 6.7669 | 5400 | 0.6466 | 0.802 | 0.8006 |
| 0.1091 | 7.0175 | 5600 | 0.6515 | 0.818 | 0.8172 |
| 0.1091 | 7.2682 | 5800 | 0.6541 | 0.819 | 0.8174 |
| 0.1091 | 7.5188 | 6000 | 0.6148 | 0.828 | 0.8246 |
| 0.1091 | 7.7694 | 6200 | 0.6246 | 0.827 | 0.8262 |
| 0.0917 | 8.0201 | 6400 | 0.6751 | 0.812 | 0.812 |
| 0.0917 | 8.2707 | 6600 | 0.6371 | 0.829 | 0.8281 |
| 0.0917 | 8.5213 | 6800 | 0.6979 | 0.823 | 0.8212 |
| 0.0917 | 8.7719 | 7000 | 0.6792 | 0.827 | 0.8241 |
| 0.0764 | 9.0226 | 7200 | 0.6833 | 0.835 | 0.8324 |
| 0.0764 | 9.2732 | 7400 | 0.6810 | 0.84 | 0.8383 |
| 0.0764 | 9.5238 | 7600 | 0.6799 | 0.826 | 0.8233 |
| 0.0764 | 9.7744 | 7800 | 0.6988 | 0.823 | 0.8211 |
| 0.0676 | 10.0251 | 8000 | 0.7213 | 0.832 | 0.8299 |
| 0.0676 | 10.2757 | 8200 | 0.7325 | 0.83 | 0.8288 |
| 0.0676 | 10.5263 | 8400 | 0.7338 | 0.831 | 0.8293 |
| 0.0676 | 10.7769 | 8600 | 0.7210 | 0.827 | 0.8262 |
| 0.0585 | 11.0276 | 8800 | 0.7874 | 0.829 | 0.8282 |
| 0.0585 | 11.2782 | 9000 | 0.7764 | 0.836 | 0.8347 |
| 0.0585 | 11.5288 | 9200 | 0.8112 | 0.835 | 0.8342 |
| 0.0585 | 11.7794 | 9400 | 0.7485 | 0.832 | 0.8307 |
| 0.0536 | 12.0301 | 9600 | 0.7640 | 0.835 | 0.8339 |
| 0.0536 | 12.2807 | 9800 | 0.7865 | 0.837 | 0.8344 |
| 0.0536 | 12.5313 | 10000 | 0.7579 | 0.836 | 0.8350 |
| 0.0536 | 12.7820 | 10200 | 0.7846 | 0.837 | 0.8357 |
| 0.0449 | 13.0326 | 10400 | 0.7385 | 0.84 | 0.8384 |
| 0.0449 | 13.2832 | 10600 | 0.8481 | 0.838 | 0.8372 |
| 0.0449 | 13.5338 | 10800 | 0.8422 | 0.838 | 0.8368 |
| 0.0449 | 13.7845 | 11000 | 0.7742 | 0.846 | 0.8445 |
| 0.0387 | 14.0351 | 11200 | 0.8304 | 0.842 | 0.8406 |
| 0.0387 | 14.2857 | 11400 | 0.7922 | 0.84 | 0.8386 |
| 0.0387 | 14.5363 | 11600 | 0.8284 | 0.843 | 0.8415 |
| 0.0387 | 14.7870 | 11800 | 0.8289 | 0.846 | 0.8449 |
| 0.0345 | 15.0376 | 12000 | 0.8012 | 0.849 | 0.8475 |
| 0.0345 | 15.2882 | 12200 | 0.8320 | 0.85 | 0.8489 |
| 0.0345 | 15.5388 | 12400 | 0.8118 | 0.853 | 0.8516 |
| 0.0345 | 15.7895 | 12600 | 0.8084 | 0.849 | 0.8480 |
| 0.0292 | 16.0401 | 12800 | 0.8427 | 0.841 | 0.8399 |
| 0.0292 | 16.2907 | 13000 | 0.8499 | 0.848 | 0.8469 |
| 0.0292 | 16.5414 | 13200 | 0.8477 | 0.848 | 0.8470 |
| 0.0292 | 16.7920 | 13400 | 0.8211 | 0.846 | 0.8441 |
| 0.0263 | 17.0426 | 13600 | 0.8418 | 0.848 | 0.8466 |
| 0.0263 | 17.2932 | 13800 | 0.8637 | 0.842 | 0.8408 |
| 0.0263 | 17.5439 | 14000 | 0.8693 | 0.845 | 0.8440 |
| 0.0263 | 17.7945 | 14200 | 0.8415 | 0.85 | 0.8483 |
| 0.0243 | 18.0451 | 14400 | 0.8735 | 0.848 | 0.8470 |
| 0.0243 | 18.2957 | 14600 | 0.8827 | 0.847 | 0.8460 |
| 0.0243 | 18.5464 | 14800 | 0.8729 | 0.85 | 0.8489 |
| 0.0243 | 18.7970 | 15000 | 0.8964 | 0.848 | 0.8469 |
| 0.0207 | 19.0476 | 15200 | 0.8939 | 0.846 | 0.8449 |
| 0.0207 | 19.2982 | 15400 | 0.9019 | 0.847 | 0.8460 |
| 0.0207 | 19.5489 | 15600 | 0.8948 | 0.848 | 0.8469 |
| 0.0207 | 19.7995 | 15800 | 0.9059 | 0.848 | 0.8469 |
### Framework versions
- Transformers 4.43.1
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1