metadata
license: mit
tags:
- pyannote
- pyannote-audio
- pyannote-audio-pipeline
- audio
- voice
- speech
- speaker
- speaker-diarization
- speaker-change-detection
- endpoints-template
library_name: generic
WIP: Depends on #1098
🎹 Speaker diarization with Pyannote and Inference Endpoints
This repository implements a custom handler
for speaker-diarization
for 🤗 Inference Endpoints using Pyannote. The code for the customized pipeline is in the handler.py.
There is also a notebook included, on how to create the handler.py
Request
The endpoint expects a binary audio file. Below are a cURL and a Python example using the requests
library.
curl
# load audio file
wget https://cdn-media.huggingface.co/speech_samples/sample1.flac
# run request
curl --request POST \
--url https://{ENDPOINT}/ \
--header 'Content-Type: audio/x-wav' \
--header 'Authorization: Bearer {HF_TOKEN}' \
--data-binary '@sample.wav'
Python
import json
from typing import List
import requests as r
import base64
import mimetypes
ENDPOINT_URL=""
HF_TOKEN=""
def predict(path_to_audio:str=None):
# read audio file
with open(path_to_audio, "rb") as i:
b = i.read()
# get mimetype
content_type= mimetypes.guess_type(path_to_audio)[0]
headers= {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": content_type
}
response = r.post(ENDPOINT_URL, headers=headers, data=b)
return response.json()
prediction = predict(path_to_audio="sample.wav")
prediction
expected output
{"diarization": [
{"label": "SPEAKER_01", "start": "0.4978125", "stop": "1.3921875"},
{"label": "SPEAKER_01", "start": "1.8984375", "stop": "2.7590624999999998"},
{"label": "SPEAKER_02", "start": "2.9953125", "stop": "3.5015625000000004"},
{"label": "SPEAKER_01", "start": "3.5690625000000002", "stop": "4.311562500000001"}
...