philschmid HF staff commited on
Commit
f06a0c4
1 Parent(s): 1b03b11

Model save

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Meta-Llama/Meta-Llama-3.1-8B
3
+ library_name: transformers
4
+ model_name: llama-3-1-8b-math-orca-spectrum-10k-ep1
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for llama-3-1-8b-math-orca-spectrum-10k-ep1
13
+
14
+ This model is a fine-tuned version of [Meta-Llama/Meta-Llama-3.1-8B](https://huggingface.co/Meta-Llama/Meta-Llama-3.1-8B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="philschmid/llama-3-1-8b-math-orca-spectrum-10k-ep1", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+ This model was trained with SFT.
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.1
37
+ - Transformers: 4.46.3
38
+ - Pytorch: 2.4.1
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.1
41
+
42
+ ## Citations
43
+
44
+
45
+
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9882352941176471,
3
+ "total_flos": 8684660632584192.0,
4
+ "train_loss": 0.4845818508239019,
5
+ "train_runtime": 2191.8228,
6
+ "train_samples": 10000,
7
+ "train_samples_per_second": 2.468,
8
+ "train_steps_per_second": 0.019
9
+ }
config.json CHANGED
@@ -31,6 +31,6 @@
31
  "tie_word_embeddings": false,
32
  "torch_dtype": "bfloat16",
33
  "transformers_version": "4.46.3",
34
- "use_cache": false,
35
  "vocab_size": 128256
36
  }
 
31
  "tie_word_embeddings": false,
32
  "torch_dtype": "bfloat16",
33
  "transformers_version": "4.46.3",
34
+ "use_cache": true,
35
  "vocab_size": 128256
36
  }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128001,
6
+ "temperature": 0.6,
7
+ "top_p": 0.9,
8
+ "transformers_version": "4.46.3"
9
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9882352941176471,
3
+ "total_flos": 8684660632584192.0,
4
+ "train_loss": 0.4845818508239019,
5
+ "train_runtime": 2191.8228,
6
+ "train_samples": 10000,
7
+ "train_samples_per_second": 2.468,
8
+ "train_steps_per_second": 0.019
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9882352941176471,
5
+ "eval_steps": 500,
6
+ "global_step": 42,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11764705882352941,
13
+ "grad_norm": 3.502065765112122,
14
+ "learning_rate": 5e-05,
15
+ "loss": 1.2955,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.23529411764705882,
20
+ "grad_norm": 1.0166353187103343,
21
+ "learning_rate": 4.77807122597034e-05,
22
+ "loss": 0.5761,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.35294117647058826,
27
+ "grad_norm": 2.0609265403495867,
28
+ "learning_rate": 4.151686808475204e-05,
29
+ "loss": 0.4265,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.47058823529411764,
34
+ "grad_norm": 0.42584227426186005,
35
+ "learning_rate": 3.232056928191376e-05,
36
+ "loss": 0.3626,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.5882352941176471,
41
+ "grad_norm": 0.31196594170810965,
42
+ "learning_rate": 2.182455450632803e-05,
43
+ "loss": 0.337,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.7058823529411765,
48
+ "grad_norm": 0.2951365308766864,
49
+ "learning_rate": 1.1892317911069212e-05,
50
+ "loss": 0.3255,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.8235294117647058,
55
+ "grad_norm": 0.2794268174086481,
56
+ "learning_rate": 4.2872587689039484e-06,
57
+ "loss": 0.3152,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.9411764705882353,
62
+ "grad_norm": 0.27293344082468357,
63
+ "learning_rate": 3.5960224130728857e-07,
64
+ "loss": 0.3135,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.9882352941176471,
69
+ "step": 42,
70
+ "total_flos": 8684660632584192.0,
71
+ "train_loss": 0.4845818508239019,
72
+ "train_runtime": 2191.8228,
73
+ "train_samples_per_second": 2.468,
74
+ "train_steps_per_second": 0.019
75
+ }
76
+ ],
77
+ "logging_steps": 5,
78
+ "max_steps": 42,
79
+ "num_input_tokens_seen": 0,
80
+ "num_train_epochs": 1,
81
+ "save_steps": 500,
82
+ "stateful_callbacks": {
83
+ "TrainerControl": {
84
+ "args": {
85
+ "should_epoch_stop": false,
86
+ "should_evaluate": false,
87
+ "should_log": false,
88
+ "should_save": true,
89
+ "should_training_stop": true
90
+ },
91
+ "attributes": {}
92
+ }
93
+ },
94
+ "total_flos": 8684660632584192.0,
95
+ "train_batch_size": 8,
96
+ "trial_name": null,
97
+ "trial_params": null
98
+ }