|
from typing import Dict, List, Any |
|
import torch |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained("philschmid/falcon-40b-instruct-GPTQ-inference-endpoints", use_fast=False) |
|
self.model = AutoGPTQForCausalLM.from_quantized("philschmid/falcon-40b-instruct-GPTQ-inference-endpoints", device="cuda:0", use_triton=False, use_safetensors=True, torch_dtype=torch.float32, trust_remote_code=True) |
|
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids |
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(input_ids, **parameters) |
|
else: |
|
outputs = self.model.generate(input_ids) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |