philschmid HF staff commited on
Commit
1deb254
1 Parent(s): 887d5f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -12
README.md CHANGED
@@ -40,24 +40,30 @@ should probably proofread and complete it, then remove this comment. -->
40
  # distilroberta-base-ner-conll2003
41
 
42
  This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.
43
- It achieves the following results on the evaluation set:
44
- - Loss: 0.0583
45
- - Precision: 0.9493
46
- - Recall: 0.9566
47
- - F1: 0.9529
48
- - Accuracy: 0.9883
49
 
50
- ## Model description
 
 
 
 
51
 
52
- More information needed
53
 
54
- ## Intended uses & limitations
55
 
56
- More information needed
 
 
57
 
58
- ## Training and evaluation data
 
 
 
 
 
 
 
 
59
 
60
- More information needed
61
 
62
  ## Training procedure
63
 
@@ -75,6 +81,37 @@ The following hyperparameters were used during training:
75
 
76
  ### Training results
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
 
80
  ### Framework versions
 
40
  # distilroberta-base-ner-conll2003
41
 
42
  This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.
 
 
 
 
 
 
43
 
44
+ eval F1-Score: 95,29 (CoNLL-03)
45
+ test F1-Score: 90,74 (CoNLL-03)
46
+
47
+ eval F1-Score: 95,29 (CoNLL++ / CoNLL-03 corrected)
48
+ test F1-Score: 92,23 (CoNLL++ / CoNLL-03 corrected)
49
 
 
50
 
51
+ ## Model Usage
52
 
53
+ ```python
54
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
55
+ from transformers import pipeline
56
 
57
+ tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-conll2003")
58
+ model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-conll2003")
59
+
60
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer,grouped_entities=True)
61
+ example = "My name is Philipp, I am a Machine Learning Engineer at HuggingFace and live in Nuremberg"
62
+
63
+ ner_results = nlp(example)
64
+ print(ner_results)
65
+ ```
66
 
 
67
 
68
  ## Training procedure
69
 
 
81
 
82
  ### Training results
83
 
84
+ #### CoNNL2003
85
+
86
+ It achieves the following results on the evaluation set:
87
+ - Loss: 0.0583
88
+ - Precision: 0.9493
89
+ - Recall: 0.9566
90
+ - F1: 0.9529
91
+ - Accuracy: 0.9883
92
+
93
+ It achieves the following results on the test set:
94
+ - Loss: 0.2025
95
+ - Precision: 0.8999
96
+ - Recall: 0.915
97
+ - F1: 0.9074
98
+ - Accuracy: 0.9741
99
+
100
+ #### CoNNL++ / CoNLL2003 corrected
101
+
102
+ It achieves the following results on the evaluation set:
103
+ - Loss: 0.0567
104
+ - Precision: 0.9493
105
+ - Recall: 0.9566
106
+ - F1: 0.9529
107
+ - Accuracy: 0.9883
108
+
109
+ It achieves the following results on the test set:
110
+ - Loss: 0.1359
111
+ - Precision: 0.92
112
+ - Recall: 0.9245
113
+ - F1: 0.9223
114
+ - Accuracy: 0.9785
115
 
116
 
117
  ### Framework versions