Commit
•
ae9bb66
1
Parent(s):
0e7e1e8
Update pipeline.py
Browse files- pipeline.py +13 -5
pipeline.py
CHANGED
@@ -12,15 +12,23 @@ class PreTrainedPipeline():
|
|
12 |
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
13 |
|
14 |
|
15 |
-
def __call__(self,
|
16 |
"""
|
17 |
Args:
|
18 |
-
|
19 |
-
|
20 |
Return:
|
21 |
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
22 |
- "label": A string representing what the label/class is. There can be multiple labels.
|
23 |
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
24 |
"""
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
13 |
|
14 |
|
15 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
16 |
"""
|
17 |
Args:
|
18 |
+
data (:obj:):
|
19 |
+
includes the input data and the parameters for the inference.
|
20 |
Return:
|
21 |
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
22 |
- "label": A string representing what the label/class is. There can be multiple labels.
|
23 |
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
24 |
"""
|
25 |
+
inputs = data.pop("inputs", data)
|
26 |
+
parameters = data.pop("parameters", None)
|
27 |
+
|
28 |
+
# pass inputs with all kwargs in data
|
29 |
+
if parameters is not None:
|
30 |
+
prediction = self.pipeline(inputs, **parameters)
|
31 |
+
else:
|
32 |
+
prediction = self.pipeline(inputs)
|
33 |
+
# postprocess the prediction
|
34 |
+
return prediction
|