philschmid HF staff commited on
Commit
0c86405
1 Parent(s): ebe2b93

Create new file

Browse files
Files changed (1) hide show
  1. handler.py +34 -0
handler.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from optimum.onnxruntime import ORTModelForSequenceClassification
3
+ from transformers import pipeline, AutoTokenizer
4
+
5
+
6
+ class EndpointHandler():
7
+ def __init__(self, path=""):
8
+ # load the optimized model
9
+ model = ORTModelForSequenceClassification.from_pretrained(path)
10
+ tokenizer = AutoTokenizer.from_pretrained(path)
11
+ # create inference pipeline
12
+ self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
13
+
14
+
15
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
16
+ """
17
+ Args:
18
+ data (:obj:):
19
+ includes the input data and the parameters for the inference.
20
+ Return:
21
+ A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
22
+ - "label": A string representing what the label/class is. There can be multiple labels.
23
+ - "score": A score between 0 and 1 describing how confident the model is for this label/class.
24
+ """
25
+ inputs = data.pop("inputs", data)
26
+ parameters = data.pop("parameters", None)
27
+
28
+ # pass inputs with all kwargs in data
29
+ if parameters is not None:
30
+ prediction = self.pipeline(inputs, **parameters)
31
+ else:
32
+ prediction = self.pipeline(inputs)
33
+ # postprocess the prediction
34
+ return prediction