|
--- |
|
language: |
|
- en |
|
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 |
|
tags: |
|
- text-classification |
|
- emotion |
|
- pytorch |
|
license: apache-2.0 |
|
datasets: |
|
- emotion |
|
metrics: |
|
- Accuracy, F1 Score |
|
model-index: |
|
- name: bhadresh-savani/distilbert-base-uncased-emotion |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: emotion |
|
type: emotion |
|
config: default |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.927 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.8880230732280744 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.927 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.9272902840835793 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.8790126653780703 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.927 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.927 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.8825061528287809 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.927 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.926876082854655 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.17403268814086914 |
|
verified: true |
|
--- |
|
# Distilbert-base-uncased-emotion |
|
|
|
## Model description: |
|
[Distilbert](https://arxiv.org/abs/1910.01108) is created with knowledge distillation during the pre-training phase which reduces the size of a BERT model by 40%, while retaining 97% of its language understanding. It's smaller, faster than Bert and any other Bert-based model. |
|
|
|
[Distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters |
|
``` |
|
learning rate 2e-5, |
|
batch size 64, |
|
num_train_epochs=8, |
|
``` |
|
|
|
## Model Performance Comparision on Emotion Dataset from Twitter: |
|
|
|
| Model | Accuracy | F1 Score | Test Sample per Second | |
|
| --- | --- | --- | --- | |
|
| [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 | |
|
| [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 | |
|
| [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 | |
|
| [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 | |
|
|
|
## How to Use the model: |
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion', return_all_scores=True) |
|
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", ) |
|
print(prediction) |
|
|
|
""" |
|
Output: |
|
[[ |
|
{'label': 'sadness', 'score': 0.0006792712374590337}, |
|
{'label': 'joy', 'score': 0.9959300756454468}, |
|
{'label': 'love', 'score': 0.0009452480007894337}, |
|
{'label': 'anger', 'score': 0.0018055217806249857}, |
|
{'label': 'fear', 'score': 0.00041110432357527316}, |
|
{'label': 'surprise', 'score': 0.0002288572577526793} |
|
]] |
|
""" |
|
``` |
|
|
|
## Dataset: |
|
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). |
|
|
|
## Training procedure |
|
[Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb) |
|
|
|
## Eval results |
|
```json |
|
{ |
|
'test_accuracy': 0.938, |
|
'test_f1': 0.937932884041714, |
|
'test_loss': 0.1472451239824295, |
|
'test_mem_cpu_alloc_delta': 0, |
|
'test_mem_cpu_peaked_delta': 0, |
|
'test_mem_gpu_alloc_delta': 0, |
|
'test_mem_gpu_peaked_delta': 163454464, |
|
'test_runtime': 5.0164, |
|
'test_samples_per_second': 398.69 |
|
} |
|
``` |
|
|
|
## Reference: |
|
* [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/) |