BERT-Banking77 / README.md
lewtun's picture
lewtun HF staff
Add evaluation results on banking77 dataset
889d9a1
|
raw
history blame
3.01 kB
metadata
tags: autotrain
language: en
widget:
  - text: I am still waiting on my card?
datasets:
  - banking77
model-index:
  - name: BERT-Banking77
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: BANKING77
          type: banking77
        metrics:
          - name: Accuracy
            type: accuracy
            value: 92.64
          - name: Macro F1
            type: macro-f1
            value: 92.64
          - name: Weighted F1
            type: weighted-f1
            value: 92.6
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: banking77
          type: banking77
          config: default
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9275974025974026
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.9305185253845069
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.9275974025974026
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.9305185253845071
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.9275974025974028
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.9275974025974026
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.9275974025974026
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.927623314966026
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.9275974025974026
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.927623314966026
            verified: true
          - name: loss
            type: loss
            value: 0.3199225962162018
            verified: true
co2_eq_emissions: 0.03330651014155927

BERT-Banking77 Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 940131041
  • CO2 Emissions (in grams): 0.03330651014155927

Validation Metrics

  • Loss: 0.3505457043647766
  • Accuracy: 0.9263261296660118
  • Macro F1: 0.9268371013605569
  • Micro F1: 0.9263261296660118
  • Weighted F1: 0.9259954221865809
  • Macro Precision: 0.9305746406646502
  • Micro Precision: 0.9263261296660118
  • Weighted Precision: 0.929031563971418
  • Macro Recall: 0.9263724620088746
  • Micro Recall: 0.9263261296660118
  • Weighted Recall: 0.9263261296660118

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/philschmid/autotrain-does-it-work-940131041

Or Python API:

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model_id = 'philschmid/BERT-Banking77'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier('What is the base of the exchange rates?')