End of training
Browse files- README.md +19 -23
- config.json +5 -5
- pytorch_model.bin +1 -1
- training_args.bin +2 -2
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,37 +52,33 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 4
|
57 |
- eval_batch_size: 4
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps:
|
60 |
-
- total_train_batch_size:
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 2.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.1456 | 13.0 | 731 | 0.6103 | 0.83 |
|
83 |
-
| 0.0831 | 13.99 | 787 | 0.5913 | 0.82 |
|
84 |
-
| 0.0683 | 14.99 | 843 | 0.6315 | 0.82 |
|
85 |
-
| 0.0863 | 15.93 | 896 | 0.6177 | 0.82 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.87
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6139
|
36 |
+
- Accuracy: 0.87
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 8e-05
|
56 |
- train_batch_size: 4
|
57 |
- eval_batch_size: 4
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 8
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 12
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.0172 | 1.0 | 112 | 1.8314 | 0.37 |
|
71 |
+
| 1.5433 | 2.0 | 225 | 1.2575 | 0.5 |
|
72 |
+
| 1.1517 | 3.0 | 337 | 0.9577 | 0.7 |
|
73 |
+
| 0.904 | 4.0 | 450 | 0.7582 | 0.77 |
|
74 |
+
| 0.4788 | 5.0 | 562 | 0.7504 | 0.79 |
|
75 |
+
| 0.3843 | 6.0 | 675 | 0.6265 | 0.79 |
|
76 |
+
| 0.3683 | 7.0 | 787 | 0.6683 | 0.8 |
|
77 |
+
| 0.2278 | 8.0 | 900 | 0.8167 | 0.77 |
|
78 |
+
| 0.4534 | 9.0 | 1012 | 0.6023 | 0.83 |
|
79 |
+
| 0.2357 | 10.0 | 1125 | 0.6185 | 0.83 |
|
80 |
+
| 0.3674 | 11.0 | 1237 | 0.6079 | 0.86 |
|
81 |
+
| 0.148 | 11.95 | 1344 | 0.6139 | 0.87 |
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
config.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
"_name_or_path": "ntu-spml/distilhubert",
|
3 |
-
"activation_dropout": 0.
|
4 |
"apply_spec_augment": false,
|
5 |
"architectures": [
|
6 |
"HubertForSequenceClassification"
|
7 |
],
|
8 |
-
"attention_dropout": 0.
|
9 |
"bos_token_id": 1,
|
10 |
"classifier_proj_size": 256,
|
11 |
"conv_bias": false,
|
@@ -44,9 +44,9 @@
|
|
44 |
"feat_extract_norm": "group",
|
45 |
"feat_proj_dropout": 0.0,
|
46 |
"feat_proj_layer_norm": false,
|
47 |
-
"final_dropout": 0.
|
48 |
"hidden_act": "gelu",
|
49 |
-
"hidden_dropout": 0.
|
50 |
"hidden_size": 768,
|
51 |
"id2label": {
|
52 |
"0": "blues",
|
@@ -75,7 +75,7 @@
|
|
75 |
"rock": "9"
|
76 |
},
|
77 |
"layer_norm_eps": 1e-05,
|
78 |
-
"layerdrop": 0.
|
79 |
"mask_feature_length": 10,
|
80 |
"mask_feature_min_masks": 0,
|
81 |
"mask_feature_prob": 0.0,
|
|
|
1 |
{
|
2 |
"_name_or_path": "ntu-spml/distilhubert",
|
3 |
+
"activation_dropout": 0.7,
|
4 |
"apply_spec_augment": false,
|
5 |
"architectures": [
|
6 |
"HubertForSequenceClassification"
|
7 |
],
|
8 |
+
"attention_dropout": 0.5,
|
9 |
"bos_token_id": 1,
|
10 |
"classifier_proj_size": 256,
|
11 |
"conv_bias": false,
|
|
|
44 |
"feat_extract_norm": "group",
|
45 |
"feat_proj_dropout": 0.0,
|
46 |
"feat_proj_layer_norm": false,
|
47 |
+
"final_dropout": 0.5,
|
48 |
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.5,
|
50 |
"hidden_size": 768,
|
51 |
"id2label": {
|
52 |
"0": "blues",
|
|
|
75 |
"rock": "9"
|
76 |
},
|
77 |
"layer_norm_eps": 1e-05,
|
78 |
+
"layerdrop": 0.1,
|
79 |
"mask_feature_length": 10,
|
80 |
"mask_feature_min_masks": 0,
|
81 |
"mask_feature_prob": 0.0,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94783376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:328f55a11052a43d166463f0b1abfdc54ccee0e5eaa749254a6972fcf8ae1860
|
3 |
size 94783376
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18b79cc5e186ee2dfc4553015096d16433b1e60bccdfb987027833fa8123d3f8
|
3 |
+
size 4091
|