petr-B's picture
Training complete
be318ce verified
|
raw
history blame
2.48 kB
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - gazeta
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-amazon-en-es
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: gazeta
          type: gazeta
          config: default
          split: validation
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 9.9348

mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of google/mt5-small on the gazeta dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2573
  • Rouge1: 9.9348
  • Rouge2: 1.4701
  • Rougel: 9.7352
  • Rougelsum: 9.7173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
5.0727 1.0 763 2.4238 9.9038 2.2835 9.5715 9.6056
3.4561 2.0 1526 2.3779 10.5328 2.1668 10.297 10.2517
3.2731 3.0 2289 2.3248 11.0603 2.3552 10.9513 10.9458
3.1629 4.0 3052 2.2993 9.6206 1.553 9.4704 9.4079
3.0912 5.0 3815 2.2779 9.9379 1.5493 9.7858 9.7129
3.0449 6.0 4578 2.2698 10.1558 1.5231 9.947 9.8629
3.0184 7.0 5341 2.2683 9.7056 1.5373 9.4965 9.3964
2.9987 8.0 6104 2.2573 9.9348 1.4701 9.7352 9.7173

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1