update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,52 +38,42 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate: 5e-
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
45 |
-
- gradient_accumulation_steps:
|
46 |
- total_train_batch_size: 4
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
-
- num_epochs:
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
| 0.
|
72 |
-
|
|
73 |
-
|
|
74 |
-
| 0.
|
75 |
-
|
|
76 |
-
| 0.
|
77 |
-
| 0.0003 | 21.0 | 4719 | 0.8960 | 0.86 |
|
78 |
-
| 0.0003 | 22.0 | 4944 | 1.0281 | 0.85 |
|
79 |
-
| 0.0002 | 23.0 | 5169 | 0.8940 | 0.86 |
|
80 |
-
| 0.0002 | 24.0 | 5394 | 0.8929 | 0.86 |
|
81 |
-
| 0.0002 | 25.0 | 5618 | 0.9515 | 0.86 |
|
82 |
-
| 0.0002 | 26.0 | 5843 | 0.9025 | 0.85 |
|
83 |
-
| 0.0002 | 27.0 | 6068 | 0.9667 | 0.86 |
|
84 |
-
| 0.0002 | 28.0 | 6293 | 0.9715 | 0.86 |
|
85 |
-
| 0.0002 | 29.0 | 6517 | 0.9674 | 0.86 |
|
86 |
-
| 0.0002 | 29.9 | 6720 | 0.9809 | 0.86 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9739
|
22 |
+
- Accuracy: 0.76
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-06
|
42 |
+
- train_batch_size: 2
|
43 |
+
- eval_batch_size: 2
|
44 |
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
- total_train_batch_size: 4
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 20
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
57 |
+
| 2.2896 | 1.0 | 225 | 2.2805 | 0.25 |
|
58 |
+
| 2.1881 | 2.0 | 450 | 2.1587 | 0.49 |
|
59 |
+
| 1.9686 | 3.0 | 675 | 1.9439 | 0.54 |
|
60 |
+
| 1.8591 | 4.0 | 900 | 1.7870 | 0.58 |
|
61 |
+
| 1.7089 | 5.0 | 1125 | 1.6137 | 0.63 |
|
62 |
+
| 1.6092 | 6.0 | 1350 | 1.5151 | 0.67 |
|
63 |
+
| 1.5813 | 7.0 | 1575 | 1.4201 | 0.68 |
|
64 |
+
| 1.3893 | 8.0 | 1800 | 1.3214 | 0.68 |
|
65 |
+
| 1.3429 | 9.0 | 2025 | 1.2664 | 0.68 |
|
66 |
+
| 1.3234 | 10.0 | 2250 | 1.2207 | 0.67 |
|
67 |
+
| 1.4794 | 11.0 | 2475 | 1.1531 | 0.73 |
|
68 |
+
| 1.3373 | 12.0 | 2700 | 1.1131 | 0.71 |
|
69 |
+
| 1.0693 | 13.0 | 2925 | 1.0817 | 0.73 |
|
70 |
+
| 1.14 | 14.0 | 3150 | 1.0618 | 0.72 |
|
71 |
+
| 0.8953 | 15.0 | 3375 | 1.0229 | 0.73 |
|
72 |
+
| 1.2187 | 16.0 | 3600 | 1.0202 | 0.74 |
|
73 |
+
| 1.1009 | 17.0 | 3825 | 0.9971 | 0.76 |
|
74 |
+
| 0.9364 | 18.0 | 4050 | 0.9846 | 0.75 |
|
75 |
+
| 1.132 | 19.0 | 4275 | 0.9772 | 0.76 |
|
76 |
+
| 0.8295 | 20.0 | 4500 | 0.9739 | 0.76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|