|
Continued pretrained from the nb-roberta-base. |
|
|
|
The domain specific pretraining is done on the 102GB (Scandinavian corpus)[https://huggingface.co/datasets/NbAiLab/scandinavian]. |
|
|
|
## Train for 180k steps for 128 sequences: |
|
```bash |
|
./run_mlm_flax_stream.py \ |
|
--output_dir="./" \ |
|
--model_type="roberta" \ |
|
--config_name="./" \ |
|
--tokenizer_name="./" \ |
|
--model_name_or_path="./" \ |
|
--dataset_name="NbAiLab/scandinavian" \ |
|
--max_seq_length="128" \ |
|
--weight_decay="0.01" \ |
|
--per_device_train_batch_size="128" \ |
|
--per_device_eval_batch_size="128" \ |
|
--learning_rate="6e-5" \ |
|
--warmup_steps="5000" \ |
|
--overwrite_output_dir \ |
|
--cache_dir /mnt/disks/flaxdisk/cache/ \ |
|
--num_train_steps="180000" \ |
|
--adam_beta1="0.9" \ |
|
--adam_beta2="0.98" \ |
|
--logging_steps="10000" \ |
|
--save_steps="10000" \ |
|
--eval_steps="10000" \ |
|
--preprocessing_num_workers 96 \ |
|
--auth_token True \ |
|
--adafactor \ |
|
--push_to_hub |
|
``` |
|
## Train for 20k steps for 512 sequences: |
|
```bash |
|
./run_mlm_flax_stream.py \ |
|
--output_dir="./" \ |
|
--model_type="roberta" \ |
|
--config_name="./" \ |
|
--tokenizer_name="./" \ |
|
--model_name_or_path="./" \ |
|
--dataset_name="NbAiLab/scandinavian" \ |
|
--max_seq_length="512" \ |
|
--weight_decay="0.01" \ |
|
--per_device_train_batch_size="48" \ |
|
--per_device_eval_batch_size="48" \ |
|
--learning_rate="3e-5" \ |
|
--warmup_steps="5000" \ |
|
--overwrite_output_dir \ |
|
--cache_dir /mnt/disks/flaxdisk/cache/ \ |
|
--num_train_steps="20000" \ |
|
--adam_beta1="0.9" \ |
|
--adam_beta2="0.98" \ |
|
--logging_steps="20000" \ |
|
--save_steps="10000" \ |
|
--eval_steps="10000" \ |
|
--preprocessing_num_workers 96 \ |
|
--auth_token True \ |
|
--adafactor \ |
|
--push_to_hub |
|
``` |
|
|
|
|
|
|
|
Approximate additional training time: 1 week. |
|
|
|
|
|
|