|
--- |
|
license: cc-by-4.0 |
|
base_model: pengold/t5-vietnamese-summarization |
|
tags: |
|
- summarization |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-vietnamese-summarization |
|
results: [] |
|
inference: |
|
parameters: |
|
min_length: 5 |
|
max_length: 150 |
|
widget: |
|
- text: >- |
|
summarize: Thảo luận phiên chuyên đề 2 về năng suất lao động tại Diễn đàn |
|
Kinh tế - Xã hội 2023 ngày 19/9, Chuyên gia Kinh tế quốc tế Jonathan Pincus |
|
(Tổ chức phát triển Liên hợp quốc tại Việt Nam) nói việc tăng năng suất lao |
|
động cần nhìn nhận trong quá trình dài hơi thay vì trong giai đoạn ngắn. Rất |
|
khó để một quốc gia có thể tăng trưởng năng suất nhanh trong một giai đoạn |
|
dài, đó chính là bẫy năng suất trung bình, ông Pincus đúc rút, gọi đây là |
|
mối đe dọa lớn. |
|
example_title: Example 1 |
|
- text: >- |
|
summarize: Đây là nỗ lực của chính phủ nhằm giảm đi cơn sốt trên |
|
thị trường chứng khoán. Quyết định này có tác động ngay lập tức. |
|
Chỉ số chính của thị trường chứng khoán Thượng Hải khi đóng cửa |
|
giảm 281.8 điểm, ở mức 4053.1. Một số phân tích gia nói việc cổ |
|
phiếu sụt giá cũng chỉ mang tính tạm thời mà thôi. Ngân hàng Thế |
|
giới giờ đây dự đoán nền kinh tế Trung Quốc sẽ tăng 10.4% trong năm |
|
nay. Lúc trước, Ngân hàng Thế giới dự đoán kinh tế Trung Quốc sẽ |
|
tăng 9.6% trong năm 2007. Với việc Bắc Kinh đưa ra hành động nhằm |
|
giảm nhiệt thị trường chứng khoán vào hôm thứ Tư, thuế đối với |
|
cổ phiếu giao dịch giờ đây tăng từ 0.1% lên 0.3%. Tính đến phiên |
|
đóng cửa vào hôm thứ Ba, chỉ số cổ phiếu Thượng Hải đã tăng 62% |
|
trong năm nay, và có giá trị tăng gấp bốn lần kể từ đầu năm 2006. |
|
Ông Thomas Gruener từ Landesbank Berlin nói: “Hành động này có thể |
|
tạo ra việc điều chỉnh giá nhưng nhìn chung chúng tôi không cho là |
|
xu hướng sẽ thay đổi”. Tuy nhiên, việc cổ phiếu Thượng Hải sụt giá |
|
có thể sẽ tác động tới tâm lý của các thị trường chứng khoán |
|
châu Âu. Thế nên các chỉ số chứng khoán tại châu Âu khi mở cửa hôm |
|
thứ Tư đều hạ. |
|
example_title: Example 2 |
|
language: |
|
- vi |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-vietnamese-summarization |
|
|
|
This model is a fine-tuned version of [pengold/t5-vietnamese-summarization](https://huggingface.co/pengold/t5-vietnamese-summarization) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.6288 |
|
- Rouge1: 0.4728 |
|
- Rouge2: 0.1669 |
|
- Rougel: 0.3049 |
|
- Rougelsum: 0.3049 |
|
- Gen Len: 18.7458 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 70 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 5.2487 | 1.0 | 2007 | 5.0028 | 0.4671 | 0.1595 | 0.2994 | 0.2994 | 18.7618 | |
|
| 5.217 | 2.0 | 4014 | 4.9802 | 0.4639 | 0.1569 | 0.2984 | 0.2983 | 18.7747 | |
|
| 5.2191 | 3.0 | 6021 | 4.9685 | 0.4644 | 0.1594 | 0.2989 | 0.2989 | 18.7613 | |
|
| 5.2254 | 4.0 | 8028 | 4.9477 | 0.4648 | 0.1586 | 0.2988 | 0.2987 | 18.7458 | |
|
| 5.1735 | 5.0 | 10035 | 4.9366 | 0.4654 | 0.1593 | 0.2988 | 0.2987 | 18.761 | |
|
| 5.1735 | 6.0 | 12042 | 4.9214 | 0.4676 | 0.1611 | 0.3004 | 0.3004 | 18.78 | |
|
| 5.1653 | 7.0 | 14049 | 4.9095 | 0.4681 | 0.1616 | 0.3007 | 0.3007 | 18.7523 | |
|
| 5.1154 | 8.0 | 16056 | 4.8971 | 0.4664 | 0.1598 | 0.3002 | 0.3001 | 18.7655 | |
|
| 5.1232 | 9.0 | 18063 | 4.8882 | 0.4683 | 0.1612 | 0.3008 | 0.3008 | 18.761 | |
|
| 5.0995 | 10.0 | 20070 | 4.8758 | 0.4709 | 0.1618 | 0.3021 | 0.302 | 18.7518 | |
|
| 5.1012 | 11.0 | 22077 | 4.8689 | 0.4685 | 0.1616 | 0.3011 | 0.3009 | 18.7665 | |
|
| 5.0916 | 12.0 | 24084 | 4.8486 | 0.4695 | 0.1623 | 0.3024 | 0.3023 | 18.7655 | |
|
| 5.0559 | 13.0 | 26091 | 4.8409 | 0.4699 | 0.1631 | 0.3024 | 0.3023 | 18.7849 | |
|
| 5.0633 | 14.0 | 28098 | 4.8326 | 0.4705 | 0.1613 | 0.302 | 0.302 | 18.7583 | |
|
| 5.0335 | 15.0 | 30105 | 4.8243 | 0.4696 | 0.1612 | 0.3023 | 0.3022 | 18.7638 | |
|
| 5.0271 | 16.0 | 32112 | 4.8046 | 0.4691 | 0.1618 | 0.3022 | 0.3022 | 18.7518 | |
|
| 5.0045 | 17.0 | 34119 | 4.8060 | 0.4708 | 0.1629 | 0.3029 | 0.3028 | 18.7568 | |
|
| 5.0072 | 18.0 | 36126 | 4.7945 | 0.4702 | 0.1633 | 0.3024 | 0.3023 | 18.776 | |
|
| 4.9954 | 19.0 | 38133 | 4.7894 | 0.47 | 0.1639 | 0.3022 | 0.3021 | 18.7785 | |
|
| 4.9994 | 20.0 | 40140 | 4.7773 | 0.4692 | 0.1625 | 0.3028 | 0.3027 | 18.7623 | |
|
| 4.953 | 21.0 | 42147 | 4.7641 | 0.4682 | 0.162 | 0.3015 | 0.3014 | 18.757 | |
|
| 4.9526 | 22.0 | 44154 | 4.7600 | 0.4703 | 0.1626 | 0.3023 | 0.3023 | 18.7625 | |
|
| 4.9571 | 23.0 | 46161 | 4.7592 | 0.4698 | 0.1627 | 0.3025 | 0.3025 | 18.781 | |
|
| 4.9324 | 24.0 | 48168 | 4.7511 | 0.4697 | 0.1631 | 0.3022 | 0.3021 | 18.769 | |
|
| 4.9323 | 25.0 | 50175 | 4.7433 | 0.4723 | 0.1649 | 0.304 | 0.3039 | 18.7757 | |
|
| 4.9381 | 26.0 | 52182 | 4.7378 | 0.4703 | 0.1629 | 0.3026 | 0.3026 | 18.7782 | |
|
| 4.9288 | 27.0 | 54189 | 4.7454 | 0.4709 | 0.1627 | 0.3026 | 0.3026 | 18.7777 | |
|
| 4.9131 | 28.0 | 56196 | 4.7222 | 0.471 | 0.1652 | 0.3037 | 0.3037 | 18.782 | |
|
| 4.9005 | 29.0 | 58203 | 4.7241 | 0.4719 | 0.1638 | 0.3039 | 0.3038 | 18.778 | |
|
| 4.9051 | 30.0 | 60210 | 4.7225 | 0.4715 | 0.1647 | 0.3037 | 0.3036 | 18.7668 | |
|
| 4.8816 | 31.0 | 62217 | 4.7181 | 0.4701 | 0.1631 | 0.3029 | 0.3029 | 18.7416 | |
|
| 4.8687 | 32.0 | 64224 | 4.7061 | 0.4705 | 0.1643 | 0.3032 | 0.3031 | 18.7625 | |
|
| 4.8935 | 33.0 | 66231 | 4.7063 | 0.4697 | 0.1632 | 0.3028 | 0.3028 | 18.7458 | |
|
| 4.88 | 34.0 | 68238 | 4.6984 | 0.471 | 0.164 | 0.3039 | 0.3039 | 18.7663 | |
|
| 4.8473 | 35.0 | 70245 | 4.6934 | 0.4699 | 0.1636 | 0.3034 | 0.3033 | 18.7531 | |
|
| 4.8613 | 36.0 | 72252 | 4.6863 | 0.4705 | 0.1631 | 0.303 | 0.303 | 18.7797 | |
|
| 4.8491 | 37.0 | 74259 | 4.6847 | 0.4703 | 0.1638 | 0.3037 | 0.3037 | 18.78 | |
|
| 4.8239 | 38.0 | 76266 | 4.6804 | 0.4707 | 0.1632 | 0.3032 | 0.3032 | 18.7802 | |
|
| 4.8767 | 39.0 | 78273 | 4.6788 | 0.4703 | 0.1637 | 0.3027 | 0.3026 | 18.7446 | |
|
| 4.8402 | 40.0 | 80280 | 4.6700 | 0.4699 | 0.1633 | 0.3028 | 0.3028 | 18.7516 | |
|
| 4.8261 | 41.0 | 82287 | 4.6660 | 0.4699 | 0.1633 | 0.3029 | 0.3028 | 18.7369 | |
|
| 4.8193 | 42.0 | 84294 | 4.6693 | 0.4711 | 0.1654 | 0.3039 | 0.3038 | 18.7421 | |
|
| 4.8161 | 43.0 | 86301 | 4.6636 | 0.4707 | 0.1642 | 0.303 | 0.303 | 18.7595 | |
|
| 4.832 | 44.0 | 88308 | 4.6619 | 0.4708 | 0.1646 | 0.3036 | 0.3035 | 18.7423 | |
|
| 4.8304 | 45.0 | 90315 | 4.6575 | 0.4711 | 0.1651 | 0.3038 | 0.3037 | 18.7354 | |
|
| 4.7958 | 46.0 | 92322 | 4.6543 | 0.4711 | 0.165 | 0.3032 | 0.3032 | 18.7189 | |
|
| 4.804 | 47.0 | 94329 | 4.6541 | 0.4711 | 0.1656 | 0.3037 | 0.3036 | 18.7396 | |
|
| 4.7968 | 48.0 | 96336 | 4.6495 | 0.4709 | 0.165 | 0.3034 | 0.3034 | 18.7411 | |
|
| 4.7912 | 49.0 | 98343 | 4.6471 | 0.4718 | 0.1655 | 0.3041 | 0.3042 | 18.7361 | |
|
| 4.7721 | 50.0 | 100350 | 4.6469 | 0.4723 | 0.1667 | 0.3047 | 0.3047 | 18.7309 | |
|
| 4.7828 | 51.0 | 102357 | 4.6476 | 0.4712 | 0.1656 | 0.3044 | 0.3045 | 18.7446 | |
|
| 4.7934 | 52.0 | 104364 | 4.6453 | 0.4707 | 0.1645 | 0.3035 | 0.3035 | 18.7329 | |
|
| 4.7724 | 53.0 | 106371 | 4.6425 | 0.4715 | 0.1657 | 0.304 | 0.304 | 18.7403 | |
|
| 4.7804 | 54.0 | 108378 | 4.6362 | 0.4711 | 0.1658 | 0.3041 | 0.3041 | 18.7488 | |
|
| 4.792 | 55.0 | 110385 | 4.6363 | 0.4706 | 0.1653 | 0.3038 | 0.3038 | 18.7281 | |
|
| 4.7528 | 56.0 | 112392 | 4.6357 | 0.4724 | 0.1667 | 0.3044 | 0.3044 | 18.7463 | |
|
| 4.7849 | 57.0 | 114399 | 4.6346 | 0.472 | 0.1661 | 0.3041 | 0.304 | 18.7431 | |
|
| 4.7618 | 58.0 | 116406 | 4.6332 | 0.472 | 0.167 | 0.3046 | 0.3046 | 18.7336 | |
|
| 4.7841 | 59.0 | 118413 | 4.6287 | 0.4716 | 0.1664 | 0.3043 | 0.3043 | 18.7369 | |
|
| 4.7764 | 60.0 | 120420 | 4.6316 | 0.473 | 0.1666 | 0.3048 | 0.3047 | 18.7548 | |
|
| 4.7504 | 61.0 | 122427 | 4.6276 | 0.4721 | 0.1671 | 0.3043 | 0.3044 | 18.7371 | |
|
| 4.7629 | 62.0 | 124434 | 4.6250 | 0.4726 | 0.167 | 0.3046 | 0.3046 | 18.76 | |
|
| 4.7764 | 63.0 | 126441 | 4.6264 | 0.4725 | 0.1666 | 0.3044 | 0.3044 | 18.7446 | |
|
| 4.7524 | 64.0 | 128448 | 4.6275 | 0.4719 | 0.166 | 0.3041 | 0.3041 | 18.7428 | |
|
| 4.7641 | 65.0 | 130455 | 4.6288 | 0.4728 | 0.1669 | 0.3049 | 0.3049 | 18.7458 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |