|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
base_model: google/mt5-small |
|
model-index: |
|
- name: mt5-small-cnn-dm-kaggle-en |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-cnn-dm-kaggle-en |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2499 |
|
- Rouge1: 25.24 |
|
- Rouge2: 11.4243 |
|
- Rougel: 22.1837 |
|
- Rougelsum: 22.2212 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 3.7959 | 1.0 | 2668 | 3.3796 | 24.6486 | 10.95 | 21.6027 | 21.6371 | |
|
| 3.6116 | 2.0 | 5336 | 3.2863 | 25.0485 | 11.2204 | 21.9543 | 21.9949 | |
|
| 3.5264 | 3.0 | 8004 | 3.2426 | 25.1151 | 11.2913 | 22.0778 | 22.1108 | |
|
| 3.4845 | 4.0 | 10672 | 3.2499 | 25.24 | 11.4243 | 22.1837 | 22.2212 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |