Upload 8 files
Browse files- README.md +92 -1
- config.json +170 -0
- handler.py +108 -0
- preprocessor_config.json +25 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +21 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,94 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- image-to-text
|
4 |
+
- image-captioning
|
5 |
+
- endpoints-template
|
6 |
+
license: bsd-3-clause
|
7 |
+
library_name: generic
|
8 |
---
|
9 |
+
|
10 |
+
# Fork of [Salesforce/blip-image-captioning-large](https://huggingface.co/Salesforce/blip-image-captioning-large) for a `image-captioning` task on 🤗Inference endpoint.
|
11 |
+
|
12 |
+
This repository implements a `custom` task for `image-captioning` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/florentgbelidji/blip_captioning/blob/main/pipeline.py).
|
13 |
+
To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_
|
14 |
+
### expected Request payload
|
15 |
+
```json
|
16 |
+
{
|
17 |
+
"image": "/9j/4AAQSkZJRgA.....", #encoded image
|
18 |
+
"text": "a photography of a"
|
19 |
+
}
|
20 |
+
```
|
21 |
+
below is an example on how to run a request using Python and `requests`.
|
22 |
+
## Run Request
|
23 |
+
1. Use any online image.
|
24 |
+
```bash
|
25 |
+
!wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg
|
26 |
+
```
|
27 |
+
2.run request
|
28 |
+
|
29 |
+
```python
|
30 |
+
import json
|
31 |
+
from typing import List
|
32 |
+
import requests as r
|
33 |
+
import base64
|
34 |
+
|
35 |
+
with open("/content/demo.jpg", "rb") as image_file:
|
36 |
+
encoded_string = base64.b64encode(image_file.read()).decode()
|
37 |
+
|
38 |
+
ENDPOINT_URL = ""
|
39 |
+
HF_TOKEN = ""
|
40 |
+
|
41 |
+
def query(payload):
|
42 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
43 |
+
return response.json()
|
44 |
+
|
45 |
+
|
46 |
+
output = query({
|
47 |
+
"inputs": {
|
48 |
+
"images": [encoded_string], # using the base64 encoded string
|
49 |
+
"texts": ["a photography of"] # Optional, based on your current class logic
|
50 |
+
}
|
51 |
+
})
|
52 |
+
print(output)
|
53 |
+
```
|
54 |
+
|
55 |
+
Example parameters depending on the decoding strategy:
|
56 |
+
|
57 |
+
1. Beam search
|
58 |
+
|
59 |
+
```
|
60 |
+
"parameters": {
|
61 |
+
"num_beams":5,
|
62 |
+
"max_length":20
|
63 |
+
}
|
64 |
+
```
|
65 |
+
|
66 |
+
2. Nucleus sampling
|
67 |
+
|
68 |
+
```
|
69 |
+
"parameters": {
|
70 |
+
"num_beams":1,
|
71 |
+
"max_length":20,
|
72 |
+
"do_sample": True,
|
73 |
+
"top_k":50,
|
74 |
+
"top_p":0.95
|
75 |
+
}
|
76 |
+
```
|
77 |
+
|
78 |
+
3. Contrastive search
|
79 |
+
|
80 |
+
```
|
81 |
+
"parameters": {
|
82 |
+
"penalty_alpha":0.6,
|
83 |
+
"top_k":4
|
84 |
+
"max_length":512
|
85 |
+
}
|
86 |
+
```
|
87 |
+
|
88 |
+
See [generate()](https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/text_generation#transformers.GenerationMixin.generate) doc for additional detail
|
89 |
+
|
90 |
+
|
91 |
+
expected output
|
92 |
+
```python
|
93 |
+
{'captions': ['a photography of a woman and her dog on the beach']}
|
94 |
+
```
|
config.json
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"BlipForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"image_text_hidden_size": 256,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"logit_scale_init_value": 2.6592,
|
9 |
+
"model_type": "blip",
|
10 |
+
"projection_dim": 512,
|
11 |
+
"text_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"attention_probs_dropout_prob": 0.0,
|
16 |
+
"bad_words_ids": null,
|
17 |
+
"begin_suppress_tokens": null,
|
18 |
+
"bos_token_id": 30522,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"decoder_start_token_id": null,
|
22 |
+
"diversity_penalty": 0.0,
|
23 |
+
"do_sample": false,
|
24 |
+
"early_stopping": false,
|
25 |
+
"encoder_hidden_size": 1024,
|
26 |
+
"encoder_no_repeat_ngram_size": 0,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"exponential_decay_length_penalty": null,
|
29 |
+
"finetuning_task": null,
|
30 |
+
"forced_bos_token_id": null,
|
31 |
+
"forced_eos_token_id": null,
|
32 |
+
"hidden_act": "gelu",
|
33 |
+
"hidden_dropout_prob": 0.0,
|
34 |
+
"hidden_size": 768,
|
35 |
+
"id2label": {
|
36 |
+
"0": "LABEL_0",
|
37 |
+
"1": "LABEL_1"
|
38 |
+
},
|
39 |
+
"initializer_factor": 1.0,
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"intermediate_size": 3072,
|
42 |
+
"is_decoder": true,
|
43 |
+
"is_encoder_decoder": false,
|
44 |
+
"label2id": {
|
45 |
+
"LABEL_0": 0,
|
46 |
+
"LABEL_1": 1
|
47 |
+
},
|
48 |
+
"layer_norm_eps": 1e-12,
|
49 |
+
"length_penalty": 1.0,
|
50 |
+
"max_length": 20,
|
51 |
+
"max_position_embeddings": 512,
|
52 |
+
"min_length": 0,
|
53 |
+
"model_type": "blip_text_model",
|
54 |
+
"no_repeat_ngram_size": 0,
|
55 |
+
"num_attention_heads": 12,
|
56 |
+
"num_beam_groups": 1,
|
57 |
+
"num_beams": 1,
|
58 |
+
"num_hidden_layers": 12,
|
59 |
+
"num_return_sequences": 1,
|
60 |
+
"output_attentions": false,
|
61 |
+
"output_hidden_states": false,
|
62 |
+
"output_scores": false,
|
63 |
+
"pad_token_id": 0,
|
64 |
+
"prefix": null,
|
65 |
+
"problem_type": null,
|
66 |
+
"projection_dim": 768,
|
67 |
+
"pruned_heads": {},
|
68 |
+
"remove_invalid_values": false,
|
69 |
+
"repetition_penalty": 1.0,
|
70 |
+
"return_dict": true,
|
71 |
+
"return_dict_in_generate": false,
|
72 |
+
"sep_token_id": 102,
|
73 |
+
"suppress_tokens": null,
|
74 |
+
"task_specific_params": null,
|
75 |
+
"temperature": 1.0,
|
76 |
+
"tf_legacy_loss": false,
|
77 |
+
"tie_encoder_decoder": false,
|
78 |
+
"tie_word_embeddings": true,
|
79 |
+
"tokenizer_class": null,
|
80 |
+
"top_k": 50,
|
81 |
+
"top_p": 1.0,
|
82 |
+
"torch_dtype": null,
|
83 |
+
"torchscript": false,
|
84 |
+
"transformers_version": "4.26.0.dev0",
|
85 |
+
"typical_p": 1.0,
|
86 |
+
"use_bfloat16": false,
|
87 |
+
"use_cache": true,
|
88 |
+
"vocab_size": 30524
|
89 |
+
},
|
90 |
+
"torch_dtype": "float32",
|
91 |
+
"transformers_version": null,
|
92 |
+
"vision_config": {
|
93 |
+
"_name_or_path": "",
|
94 |
+
"add_cross_attention": false,
|
95 |
+
"architectures": null,
|
96 |
+
"attention_dropout": 0.0,
|
97 |
+
"bad_words_ids": null,
|
98 |
+
"begin_suppress_tokens": null,
|
99 |
+
"bos_token_id": null,
|
100 |
+
"chunk_size_feed_forward": 0,
|
101 |
+
"cross_attention_hidden_size": null,
|
102 |
+
"decoder_start_token_id": null,
|
103 |
+
"diversity_penalty": 0.0,
|
104 |
+
"do_sample": false,
|
105 |
+
"dropout": 0.0,
|
106 |
+
"early_stopping": false,
|
107 |
+
"encoder_no_repeat_ngram_size": 0,
|
108 |
+
"eos_token_id": null,
|
109 |
+
"exponential_decay_length_penalty": null,
|
110 |
+
"finetuning_task": null,
|
111 |
+
"forced_bos_token_id": null,
|
112 |
+
"forced_eos_token_id": null,
|
113 |
+
"hidden_act": "gelu",
|
114 |
+
"hidden_size": 1024,
|
115 |
+
"id2label": {
|
116 |
+
"0": "LABEL_0",
|
117 |
+
"1": "LABEL_1"
|
118 |
+
},
|
119 |
+
"image_size": 384,
|
120 |
+
"initializer_factor": 1.0,
|
121 |
+
"initializer_range": 0.02,
|
122 |
+
"intermediate_size": 4096,
|
123 |
+
"is_decoder": false,
|
124 |
+
"is_encoder_decoder": false,
|
125 |
+
"label2id": {
|
126 |
+
"LABEL_0": 0,
|
127 |
+
"LABEL_1": 1
|
128 |
+
},
|
129 |
+
"layer_norm_eps": 1e-05,
|
130 |
+
"length_penalty": 1.0,
|
131 |
+
"max_length": 20,
|
132 |
+
"min_length": 0,
|
133 |
+
"model_type": "blip_vision_model",
|
134 |
+
"no_repeat_ngram_size": 0,
|
135 |
+
"num_attention_heads": 16,
|
136 |
+
"num_beam_groups": 1,
|
137 |
+
"num_beams": 1,
|
138 |
+
"num_channels": 3,
|
139 |
+
"num_hidden_layers": 24,
|
140 |
+
"num_return_sequences": 1,
|
141 |
+
"output_attentions": false,
|
142 |
+
"output_hidden_states": false,
|
143 |
+
"output_scores": false,
|
144 |
+
"pad_token_id": null,
|
145 |
+
"patch_size": 16,
|
146 |
+
"prefix": null,
|
147 |
+
"problem_type": null,
|
148 |
+
"projection_dim": 512,
|
149 |
+
"pruned_heads": {},
|
150 |
+
"remove_invalid_values": false,
|
151 |
+
"repetition_penalty": 1.0,
|
152 |
+
"return_dict": true,
|
153 |
+
"return_dict_in_generate": false,
|
154 |
+
"sep_token_id": null,
|
155 |
+
"suppress_tokens": null,
|
156 |
+
"task_specific_params": null,
|
157 |
+
"temperature": 1.0,
|
158 |
+
"tf_legacy_loss": false,
|
159 |
+
"tie_encoder_decoder": false,
|
160 |
+
"tie_word_embeddings": true,
|
161 |
+
"tokenizer_class": null,
|
162 |
+
"top_k": 50,
|
163 |
+
"top_p": 1.0,
|
164 |
+
"torch_dtype": null,
|
165 |
+
"torchscript": false,
|
166 |
+
"transformers_version": "4.26.0.dev0",
|
167 |
+
"typical_p": 1.0,
|
168 |
+
"use_bfloat16": false
|
169 |
+
}
|
170 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, List
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from io import BytesIO
|
5 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
6 |
+
|
7 |
+
|
8 |
+
# Source: https://www.philschmid.de/custom-inference-handler
|
9 |
+
|
10 |
+
|
11 |
+
class EndpointHandler:
|
12 |
+
def __init__(self, path="nlpconnect/vit-gpt2-image-captioning"):
|
13 |
+
self.model = VisionEncoderDecoderModel.from_pretrained(path)
|
14 |
+
|
15 |
+
# Using ViTImageProcessor instead of ViTFeatureExtractor
|
16 |
+
self.feature_extractor = ViTImageProcessor.from_pretrained(path)
|
17 |
+
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
19 |
+
|
20 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
self.model.to(self.device)
|
22 |
+
|
23 |
+
self.max_length = 16
|
24 |
+
self.num_beams = 4
|
25 |
+
|
26 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
27 |
+
"""
|
28 |
+
Args:
|
29 |
+
data (:obj:):
|
30 |
+
includes the input image data.
|
31 |
+
Return:
|
32 |
+
A :obj:`dict` with the caption.
|
33 |
+
"""
|
34 |
+
image_bytes = data.get("inputs", None)
|
35 |
+
|
36 |
+
# Convert image bytes to PIL Image
|
37 |
+
image = Image.open(BytesIO(image_bytes))
|
38 |
+
if image.mode != "RGB":
|
39 |
+
image = image.convert(mode="RGB")
|
40 |
+
|
41 |
+
pixel_values = self.feature_extractor(
|
42 |
+
images=image, return_tensors="pt"
|
43 |
+
).pixel_values
|
44 |
+
pixel_values = pixel_values.to(self.device)
|
45 |
+
|
46 |
+
gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams}
|
47 |
+
output_ids = self.model.generate(pixel_values, **gen_kwargs)
|
48 |
+
|
49 |
+
caption = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
50 |
+
|
51 |
+
return {"caption": caption}
|
52 |
+
|
53 |
+
|
54 |
+
# from typing import Dict, Any, List
|
55 |
+
# from PIL import Image
|
56 |
+
# import torch
|
57 |
+
# import os
|
58 |
+
# from io import BytesIO
|
59 |
+
# from transformers import (
|
60 |
+
# VisionEncoderDecoderModel,
|
61 |
+
# ViTImageProcessor,
|
62 |
+
# AutoTokenizer,
|
63 |
+
# PreTrainedModel,
|
64 |
+
# )
|
65 |
+
|
66 |
+
|
67 |
+
# class EndpointHandler:
|
68 |
+
# def __init__(self, model_path="nlpconnect/vit-gpt2-image-captioning"):
|
69 |
+
# # Load model and components
|
70 |
+
# self.model: PreTrainedModel = VisionEncoderDecoderModel.from_pretrained(
|
71 |
+
# model_path
|
72 |
+
# )
|
73 |
+
# self.processor = ViTImageProcessor.from_pretrained(model_path)
|
74 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
75 |
+
|
76 |
+
# # Ensure model is on the correct device
|
77 |
+
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
+
# self.model.to(self.device)
|
79 |
+
|
80 |
+
# # Parameters for generation
|
81 |
+
# self.gen_kwargs = {"max_length": 16, "num_beams": 4, "attention_mask": True}
|
82 |
+
|
83 |
+
# # Save model and configuration to the /repository directory
|
84 |
+
# self.model_directory = "/repository"
|
85 |
+
# os.makedirs(self.model_directory, exist_ok=True) # Ensure the directory exists
|
86 |
+
# self.model.config.save_pretrained(self.model_directory)
|
87 |
+
# torch.save(
|
88 |
+
# self.model.state_dict(),
|
89 |
+
# os.path.join(self.model_directory, "pytorch_model.bin"),
|
90 |
+
# )
|
91 |
+
|
92 |
+
# def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
93 |
+
# image_bytes = data["image"]
|
94 |
+
|
95 |
+
# # Open image and ensure it's RGB
|
96 |
+
# image = Image.open(BytesIO(image_bytes))
|
97 |
+
# if image.mode != "RGB":
|
98 |
+
# image = image.convert("RGB")
|
99 |
+
|
100 |
+
# # Process image and prepare input tensor
|
101 |
+
# pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
|
102 |
+
# pixel_values = pixel_values.to(self.device)
|
103 |
+
|
104 |
+
# # Generate captions
|
105 |
+
# output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
|
106 |
+
# caption = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
107 |
+
|
108 |
+
# return {"caption": caption}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_pad": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "BlipImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"processor_class": "BlipProcessor",
|
18 |
+
"resample": 3,
|
19 |
+
"rescale_factor": 0.00392156862745098,
|
20 |
+
"size": {
|
21 |
+
"height": 384,
|
22 |
+
"width": 384
|
23 |
+
},
|
24 |
+
"size_divisor": 32
|
25 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"name_or_path": "Salesforce/blip-image-captioning-large",
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"processor_class": "BlipProcessor",
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"special_tokens_map_file": null,
|
13 |
+
"strip_accents": null,
|
14 |
+
"tokenize_chinese_chars": true,
|
15 |
+
"tokenizer_class": "BertTokenizer",
|
16 |
+
"unk_token": "[UNK]",
|
17 |
+
"model_input_names": [
|
18 |
+
"input_ids",
|
19 |
+
"attention_mask"
|
20 |
+
]
|
21 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|