Usage example
Browse files
README.md
CHANGED
@@ -11,10 +11,33 @@ inference: true
|
|
11 |
---
|
12 |
|
13 |
# LoRA text2image fine-tuning - https://huggingface.co/pcuenq/pokemon-lora
|
14 |
-
These are LoRA adaption weights
|
15 |
|
16 |
![img_0](./image_0.png)
|
17 |
![img_1](./image_1.png)
|
18 |
![img_2](./image_2.png)
|
19 |
![img_3](./image_3.png)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# LoRA text2image fine-tuning - https://huggingface.co/pcuenq/pokemon-lora
|
14 |
+
These are LoRA adaption weights trained on base model https://huggingface.co/runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following.
|
15 |
|
16 |
![img_0](./image_0.png)
|
17 |
![img_1](./image_1.png)
|
18 |
![img_2](./image_2.png)
|
19 |
![img_3](./image_3.png)
|
20 |
|
21 |
+
## How to Use
|
22 |
+
|
23 |
+
The script below loads the base model, then applies the LoRA weights and performs inference:
|
24 |
+
|
25 |
+
```Python
|
26 |
+
import torch
|
27 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
28 |
+
from huggingface_hub import model_info
|
29 |
+
|
30 |
+
# LoRA weights ~3 MB
|
31 |
+
model_path = "pcuenq/pokemon-lora"
|
32 |
+
|
33 |
+
info = model_info(model_path)
|
34 |
+
model_base = info.cardData["base_model"]
|
35 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
|
36 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
37 |
+
|
38 |
+
pipe.unet.load_attn_procs(model_path)
|
39 |
+
pipe.to("cuda")
|
40 |
+
|
41 |
+
image = pipe("Green pokemon with menacing face", num_inference_steps=25).images[0]
|
42 |
+
image.save("green_pokemon.png")
|
43 |
+
```
|