pbarker commited on
Commit
798f09a
·
verified ·
1 Parent(s): 2f67805

Upload folder using huggingface_hub

Browse files
Files changed (45) hide show
  1. .gitattributes +1 -0
  2. added_tokens.json +16 -0
  3. chat_template.json +3 -0
  4. config.json +47 -0
  5. generation_config.json +11 -0
  6. global_step198/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. global_step198/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. global_step198/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. global_step198/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  10. global_step198/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  11. global_step198/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  12. global_step198/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  13. global_step198/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  14. global_step198/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  15. global_step198/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  16. global_step198/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  17. global_step198/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  18. global_step198/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  19. global_step198/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  20. global_step198/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  21. global_step198/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  22. latest +1 -0
  23. merges.txt +0 -0
  24. model-00001-of-00004.safetensors +3 -0
  25. model-00002-of-00004.safetensors +3 -0
  26. model-00003-of-00004.safetensors +3 -0
  27. model-00004-of-00004.safetensors +3 -0
  28. model.safetensors.index.json +737 -0
  29. preprocessor_config.json +19 -0
  30. rng_state_0.pth +3 -0
  31. rng_state_1.pth +3 -0
  32. rng_state_2.pth +3 -0
  33. rng_state_3.pth +3 -0
  34. rng_state_4.pth +3 -0
  35. rng_state_5.pth +3 -0
  36. rng_state_6.pth +3 -0
  37. rng_state_7.pth +3 -0
  38. sft_args.json +302 -0
  39. special_tokens_map.json +31 -0
  40. tokenizer.json +3 -0
  41. tokenizer_config.json +144 -0
  42. trainer_state.json +452 -0
  43. training_args.bin +3 -0
  44. vocab.json +0 -0
  45. zero_to_fp32.py +674 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/patrickbarker/.cache/huggingface/hub/models--Qwen--Qwen2-VL-7B-Instruct/snapshots/a7a06a1cc11b4514ce9edcde0e3ca1d16e5ff2fc",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.47.0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "in_chans": 3,
40
+ "model_type": "qwen2_vl",
41
+ "spatial_patch_size": 14
42
+ },
43
+ "vision_end_token_id": 151653,
44
+ "vision_start_token_id": 151652,
45
+ "vision_token_id": 151654,
46
+ "vocab_size": 152064
47
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151645,
5
+ "max_new_tokens": 2048,
6
+ "pad_token_id": 151643,
7
+ "temperature": 0.01,
8
+ "top_k": 1,
9
+ "top_p": 0.001,
10
+ "transformers_version": "4.47.0"
11
+ }
global_step198/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4452329a3d53e4c996b0797f2b5677076d9a663815a3a12f6dece161e3989e71
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f28dc8b73afd1a9da6e7e7996de5c5962b5938b0ade0f2edd0dc9d38910dfd
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818122f5bd9dbfe063490611702e66a0c57e7d08c7585f4e9badcbf710e08555
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08eee69d37b83c86d9f4f3ba3187a1fd62862e4a5e0bad9496764779e1c9ac14
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25fc93b60ef39a7c0340bcec3afec77bca2dff8bc4949b69bf80a46c63e1e7b0
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15993c020e482905f4fa17bf4a0913d189fccb800beb66dd24c50b422fc87b14
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d179cd0322125fc172142cb115ac16e7d92417bcb1163147344066c890b41b
3
+ size 12437067324
global_step198/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7591ef9e467592966a7206e1949ea0026bb50aa802601cc72f63c3d2e89a1b9b
3
+ size 12437067324
global_step198/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d286540e6de070444141dd20f5a6fd7604b88ef64a28d8cef89f97d411a7f2
3
+ size 345376
global_step198/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad3972a86c3bf4a563e613a98fb71733a2f3a771f220b0500d7eb7cbca16fdf3
3
+ size 345376
global_step198/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6f7257df047ba4b959fea1a4bd9a2f1404fab5dce6121dc4c1634696d99d73c
3
+ size 345376
global_step198/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152daba7a84b0884e6abfd898c94369d28004ad379dcdc0b20e7b966d8a23e9a
3
+ size 345376
global_step198/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdd39676e8cb2d9a9031840ab573e44d7d7e0f65b952ac88b93e6935aaa29eb2
3
+ size 345376
global_step198/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f522f7b302acdc684e9dff4774f273aa6ecbc2a54d8a755ddd60324dd25d6c
3
+ size 345376
global_step198/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b92c05f47d89b0eec17738017d0a4f4e4f7472620ce98e02dba9c8405da3dc9e
3
+ size 345376
global_step198/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d0800349c6ee55b522d53908b2d08c605bb5038b32604b996c30be2bf6f6818
3
+ size 345376
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step198
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de0c81c5311d84c2cd121748bb0fbd865672e2b64e4b8ed5e3705f31089e36f1
3
+ size 4966659944
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:643e1835906fd2926dfe7bcd71abff133a401afe3a10c27d7f6a06bce60fd747
3
+ size 4991495816
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdfa5ee482f4320edaea44a6cbd6ab1924203d8fce260a4d8afdf8b3b4ddd4df
3
+ size 4932751040
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17dc33d4f3b323ac3c5bbfb7dbd505fb2c043a3009e28b3ad3786301908b9077
3
+ size 1691924384
model.safetensors.index.json ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16582751232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
350
+ "visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
351
+ "visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
352
+ "visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
353
+ "visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
354
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
355
+ "visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
356
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
357
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
358
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
359
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
729
+ "visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
730
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
731
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
732
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
733
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
734
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
735
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
736
+ }
737
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "min_pixels": 3136,
3
+ "max_pixels": 12845056,
4
+ "patch_size": 14,
5
+ "temporal_patch_size": 2,
6
+ "merge_size": 2,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "image_processor_type": "Qwen2VLImageProcessor",
18
+ "processor_class": "Qwen2VLProcessor"
19
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da661aad2e9ab98676885cda2d296e7d5781572d0062fef9c91ad25c971522e1
3
+ size 15920
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76066b4424ebb894fbf93616ab2e9648b9b421dcd3b26e99900e877a4b1aef69
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1573cf092a799f5b9d7a1ea62ab9b1b58065859e3ab6d98cc28dc4083afdcfdd
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbf4bea5d1ec717842d4dc103e72d1adb2a2b31afc91aefe38bcfcba578f77c6
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d885754fb7b8ce47bda620803ac75712487e2c508ad1b8100c7f9d38da7c661
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6862d26c10da6510d3a0336dac2f26b1e85421b284a42237463e13cc78ef3df1
3
+ size 16048
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c6b9cfcbe810c109da95d448566518364e3ee79c9bb31a904613d5a69c8b367
3
+ size 15920
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52b3be52613e7b518e640203ac12f79eb7f2fdfae165af3bb755b5db080c178
3
+ size 15920
sft_args.json ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "qwen2-vl-7b-instruct",
3
+ "model_id_or_path": "Qwen/Qwen2-VL-7B-Instruct",
4
+ "model_revision": "main",
5
+ "full_determinism": false,
6
+ "sft_type": "full",
7
+ "freeze_parameters": [],
8
+ "freeze_vit": false,
9
+ "freeze_parameters_ratio": 0.0,
10
+ "additional_trainable_parameters": [],
11
+ "tuner_backend": "peft",
12
+ "template_type": "qwen2-vl",
13
+ "output_dir": "/home/patrickbarker/output/qwen2-vl-7b-instruct/v1-20241219-214811",
14
+ "add_output_dir_suffix": true,
15
+ "ddp_backend": "nccl",
16
+ "ddp_find_unused_parameters": null,
17
+ "ddp_broadcast_buffers": null,
18
+ "ddp_timeout": 1800,
19
+ "seed": 42,
20
+ "resume_from_checkpoint": null,
21
+ "resume_only_model": false,
22
+ "ignore_data_skip": false,
23
+ "dtype": "bf16",
24
+ "packing": false,
25
+ "train_backend": "transformers",
26
+ "tp": 1,
27
+ "pp": 1,
28
+ "min_lr": null,
29
+ "sequence_parallel": false,
30
+ "model_kwargs": {},
31
+ "loss_name": null,
32
+ "dataset": [
33
+ "/home/patrickbarker/train.jsonl"
34
+ ],
35
+ "val_dataset": [
36
+ "/home/patrickbarker/val.jsonl"
37
+ ],
38
+ "dataset_seed": 42,
39
+ "dataset_test_ratio": 0.0,
40
+ "use_loss_scale": false,
41
+ "loss_scale_config_path": "/home/patrickbarker/miniconda3/lib/python3.12/site-packages/swift/llm/agent/default_loss_scale_config.json",
42
+ "system": null,
43
+ "tools_prompt": "react_en",
44
+ "max_length": 8192,
45
+ "truncation_strategy": "delete",
46
+ "check_dataset_strategy": "none",
47
+ "streaming": false,
48
+ "streaming_val_size": 0,
49
+ "streaming_buffer_size": 16384,
50
+ "model_name": [
51
+ null,
52
+ null
53
+ ],
54
+ "model_author": [
55
+ null,
56
+ null
57
+ ],
58
+ "quant_method": null,
59
+ "quantization_bit": 0,
60
+ "hqq_axis": 0,
61
+ "hqq_dynamic_config_path": null,
62
+ "bnb_4bit_comp_dtype": "bf16",
63
+ "bnb_4bit_quant_type": "nf4",
64
+ "bnb_4bit_use_double_quant": true,
65
+ "bnb_4bit_quant_storage": null,
66
+ "rescale_image": -1,
67
+ "target_modules": "^(model)(?!.*(lm_head|output|emb|wte|shared)).*",
68
+ "target_regex": null,
69
+ "modules_to_save": [],
70
+ "lora_rank": 8,
71
+ "lora_alpha": 32,
72
+ "lora_dropout": 0.05,
73
+ "lora_bias_trainable": "none",
74
+ "lora_dtype": "AUTO",
75
+ "lora_lr_ratio": null,
76
+ "use_rslora": false,
77
+ "use_dora": false,
78
+ "init_lora_weights": "true",
79
+ "fourier_n_frequency": 2000,
80
+ "fourier_scaling": 300.0,
81
+ "rope_scaling": null,
82
+ "boft_block_size": 4,
83
+ "boft_block_num": 0,
84
+ "boft_n_butterfly_factor": 1,
85
+ "boft_dropout": 0.0,
86
+ "vera_rank": 256,
87
+ "vera_projection_prng_key": 0,
88
+ "vera_dropout": 0.0,
89
+ "vera_d_initial": 0.1,
90
+ "adapter_act": "gelu",
91
+ "adapter_length": 128,
92
+ "use_galore": false,
93
+ "galore_target_modules": null,
94
+ "galore_rank": 128,
95
+ "galore_update_proj_gap": 50,
96
+ "galore_scale": 1.0,
97
+ "galore_proj_type": "std",
98
+ "galore_optim_per_parameter": false,
99
+ "galore_with_embedding": false,
100
+ "galore_quantization": false,
101
+ "galore_proj_quant": false,
102
+ "galore_proj_bits": 4,
103
+ "galore_proj_group_size": 256,
104
+ "galore_cos_threshold": 0.4,
105
+ "galore_gamma_proj": 2,
106
+ "galore_queue_size": 5,
107
+ "adalora_target_r": 8,
108
+ "adalora_init_r": 12,
109
+ "adalora_tinit": 0,
110
+ "adalora_tfinal": 0,
111
+ "adalora_deltaT": 1,
112
+ "adalora_beta1": 0.85,
113
+ "adalora_beta2": 0.85,
114
+ "adalora_orth_reg_weight": 0.5,
115
+ "ia3_feedforward_modules": [],
116
+ "llamapro_num_new_blocks": 4,
117
+ "llamapro_num_groups": null,
118
+ "neftune_noise_alpha": null,
119
+ "neftune_backend": "transformers",
120
+ "lisa_activated_layers": 0,
121
+ "lisa_step_interval": 20,
122
+ "reft_layer_key": null,
123
+ "reft_layers": null,
124
+ "reft_rank": 4,
125
+ "reft_intervention_type": "LoreftIntervention",
126
+ "reft_args": null,
127
+ "use_liger": false,
128
+ "gradient_checkpointing": true,
129
+ "vit_use_gc": true,
130
+ "deepspeed": {
131
+ "fp16": {
132
+ "enabled": "auto",
133
+ "loss_scale": 0,
134
+ "loss_scale_window": 1000,
135
+ "initial_scale_power": 16,
136
+ "hysteresis": 2,
137
+ "min_loss_scale": 1
138
+ },
139
+ "bf16": {
140
+ "enabled": "auto"
141
+ },
142
+ "optimizer": {
143
+ "type": "AdamW",
144
+ "params": {
145
+ "lr": "auto",
146
+ "betas": "auto",
147
+ "eps": "auto",
148
+ "weight_decay": "auto"
149
+ }
150
+ },
151
+ "scheduler": {
152
+ "type": "WarmupCosineLR",
153
+ "params": {
154
+ "total_num_steps": "auto",
155
+ "warmup_num_steps": "auto"
156
+ }
157
+ },
158
+ "zero_optimization": {
159
+ "stage": 3,
160
+ "offload_optimizer": {
161
+ "device": "none",
162
+ "pin_memory": true
163
+ },
164
+ "offload_param": {
165
+ "device": "none",
166
+ "pin_memory": true
167
+ },
168
+ "overlap_comm": true,
169
+ "contiguous_gradients": true,
170
+ "sub_group_size": 1000000000.0,
171
+ "reduce_bucket_size": "auto",
172
+ "stage3_prefetch_bucket_size": "auto",
173
+ "stage3_param_persistence_threshold": "auto",
174
+ "stage3_max_live_parameters": 1000000000.0,
175
+ "stage3_max_reuse_distance": 1000000000.0,
176
+ "stage3_gather_16bit_weights_on_model_save": true
177
+ },
178
+ "gradient_accumulation_steps": "auto",
179
+ "gradient_clipping": "auto",
180
+ "steps_per_print": 2000,
181
+ "train_batch_size": "auto",
182
+ "train_micro_batch_size_per_gpu": "auto",
183
+ "wall_clock_breakdown": false
184
+ },
185
+ "batch_size": 1,
186
+ "eval_batch_size": 1,
187
+ "auto_find_batch_size": false,
188
+ "num_train_epochs": 5,
189
+ "max_steps": -1,
190
+ "optim": "adamw_torch",
191
+ "adam_beta1": 0.9,
192
+ "adam_beta2": 0.95,
193
+ "adam_epsilon": 1e-08,
194
+ "learning_rate": 1e-05,
195
+ "weight_decay": 0.1,
196
+ "gradient_accumulation_steps": 2,
197
+ "max_grad_norm": 1,
198
+ "predict_with_generate": false,
199
+ "lr_scheduler_type": "cosine",
200
+ "lr_scheduler_kwargs": {},
201
+ "warmup_ratio": 0.05,
202
+ "warmup_steps": 0,
203
+ "eval_steps": 200,
204
+ "save_steps": 200,
205
+ "save_only_model": false,
206
+ "save_total_limit": 2,
207
+ "logging_steps": 5,
208
+ "acc_steps": 1,
209
+ "dataloader_num_workers": 1,
210
+ "dataloader_pin_memory": true,
211
+ "dataloader_drop_last": false,
212
+ "push_to_hub": false,
213
+ "hub_model_id": null,
214
+ "hub_token": null,
215
+ "hub_private_repo": false,
216
+ "hub_strategy": "every_save",
217
+ "test_oom_error": false,
218
+ "disable_tqdm": false,
219
+ "lazy_tokenize": true,
220
+ "preprocess_num_proc": 1,
221
+ "use_flash_attn": null,
222
+ "ignore_args_error": false,
223
+ "check_model_is_latest": true,
224
+ "logging_dir": "/home/patrickbarker/output/qwen2-vl-7b-instruct/v1-20241219-214811/runs",
225
+ "report_to": [
226
+ "wandb"
227
+ ],
228
+ "acc_strategy": "token",
229
+ "save_on_each_node": false,
230
+ "evaluation_strategy": "steps",
231
+ "save_strategy": "steps",
232
+ "save_safetensors": true,
233
+ "gpu_memory_fraction": null,
234
+ "include_num_input_tokens_seen": false,
235
+ "local_repo_path": null,
236
+ "custom_register_path": null,
237
+ "custom_dataset_info": null,
238
+ "device_map_config": null,
239
+ "device_max_memory": [],
240
+ "max_new_tokens": 2048,
241
+ "do_sample": null,
242
+ "temperature": null,
243
+ "top_k": null,
244
+ "top_p": null,
245
+ "repetition_penalty": null,
246
+ "num_beams": 1,
247
+ "fsdp": "",
248
+ "fsdp_config": null,
249
+ "sequence_parallel_size": 1,
250
+ "model_layer_cls_name": null,
251
+ "metric_warmup_step": 0,
252
+ "fsdp_num": 1,
253
+ "per_device_train_batch_size": null,
254
+ "per_device_eval_batch_size": null,
255
+ "eval_strategy": null,
256
+ "self_cognition_sample": 0,
257
+ "train_dataset_mix_ratio": 0.0,
258
+ "train_dataset_mix_ds": [
259
+ "ms-bench"
260
+ ],
261
+ "train_dataset_sample": -1,
262
+ "val_dataset_sample": null,
263
+ "safe_serialization": null,
264
+ "only_save_model": null,
265
+ "neftune_alpha": null,
266
+ "deepspeed_config_path": null,
267
+ "model_cache_dir": null,
268
+ "lora_dropout_p": null,
269
+ "lora_target_modules": [],
270
+ "lora_target_regex": null,
271
+ "lora_modules_to_save": [],
272
+ "boft_target_modules": [],
273
+ "boft_modules_to_save": [],
274
+ "vera_target_modules": [],
275
+ "vera_modules_to_save": [],
276
+ "ia3_target_modules": [],
277
+ "ia3_modules_to_save": [],
278
+ "custom_train_dataset_path": [],
279
+ "custom_val_dataset_path": [],
280
+ "device_map_config_path": null,
281
+ "push_hub_strategy": null,
282
+ "use_self_cognition": false,
283
+ "is_multimodal": true,
284
+ "is_vision": true,
285
+ "lora_use_embedding": false,
286
+ "lora_use_all": false,
287
+ "lora_m2s_use_embedding": false,
288
+ "lora_m2s_use_ln": false,
289
+ "torch_dtype": "torch.bfloat16",
290
+ "fp16": false,
291
+ "bf16": true,
292
+ "rank": 0,
293
+ "local_rank": 0,
294
+ "world_size": 8,
295
+ "local_world_size": 8,
296
+ "bnb_4bit_compute_dtype": "torch.bfloat16",
297
+ "load_in_4bit": false,
298
+ "load_in_8bit": false,
299
+ "train_sampler_random": true,
300
+ "train_type": "sft",
301
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/home/patrickbarker/output/qwen2-vl-7b-instruct/v1-20241219-214811', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=2, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1, num_train_epochs=5, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs={}, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/patrickbarker/output/qwen2-vl-7b-instruct/v1-20241219-214811/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=200, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend='nccl', tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=200, dataloader_num_workers=1, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/patrickbarker/output/qwen2-vl-7b-instruct/v1-20241219-214811', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'optimizer': {'type': 'AdamW', 'params': {'lr': 'auto', 'betas': 'auto', 'eps': 'auto', 'weight_decay': 'auto'}}, 'scheduler': {'type': 'WarmupCosineLR', 'params': {'total_num_steps': 'auto', 'warmup_num_steps': 'auto'}}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['wandb'], ddp_find_unused_parameters=False, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=False, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=False, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy=None, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=False, include_num_input_tokens_seen=False, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=False, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=GenerationConfig {\n \"bos_token_id\": 151643,\n \"do_sample\": true,\n \"eos_token_id\": 151645,\n \"max_new_tokens\": 2048,\n \"pad_token_id\": 151643,\n \"temperature\": 0.01,\n \"top_k\": 1,\n \"top_p\": 0.001\n}\n, acc_strategy='token', loss_name=None, additional_saved_files=[], train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1)"
302
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
3
+ size 11420371
tokenizer_config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "split_special_tokens": false,
142
+ "tokenizer_class": "Qwen2Tokenizer",
143
+ "unk_token": null
144
+ }
trainer_state.json ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.29077759,
3
+ "best_model_checkpoint": "/home/patrickbarker/output/qwen2-vl-7b-instruct/v1-20241219-214811/checkpoint-200",
4
+ "epoch": 4.449438202247191,
5
+ "eval_steps": 200,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "acc": 0.76875001,
13
+ "epoch": 0.02247191011235955,
14
+ "grad_norm": 29.470391176777557,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.35673797,
17
+ "memory(GiB)": 54.56,
18
+ "step": 1,
19
+ "train_speed(iter/s)": 0.02296
20
+ },
21
+ {
22
+ "acc": 0.77820516,
23
+ "epoch": 0.11235955056179775,
24
+ "grad_norm": 16.84515659540099,
25
+ "learning_rate": 6.711877414712397e-06,
26
+ "loss": 1.3136692,
27
+ "memory(GiB)": 73.74,
28
+ "step": 5,
29
+ "train_speed(iter/s)": 0.030625
30
+ },
31
+ {
32
+ "acc": 0.82758846,
33
+ "epoch": 0.2247191011235955,
34
+ "grad_norm": 16.512337769405548,
35
+ "learning_rate": 9.602525677891276e-06,
36
+ "loss": 0.96648178,
37
+ "memory(GiB)": 73.74,
38
+ "step": 10,
39
+ "train_speed(iter/s)": 0.031938
40
+ },
41
+ {
42
+ "acc": 0.83512478,
43
+ "epoch": 0.33707865168539325,
44
+ "grad_norm": 9.246001103598038,
45
+ "learning_rate": 9.990965733615236e-06,
46
+ "loss": 0.86084976,
47
+ "memory(GiB)": 73.74,
48
+ "step": 15,
49
+ "train_speed(iter/s)": 0.032388
50
+ },
51
+ {
52
+ "acc": 0.86416492,
53
+ "epoch": 0.449438202247191,
54
+ "grad_norm": 12.349159321784564,
55
+ "learning_rate": 9.954319977802235e-06,
56
+ "loss": 0.74885101,
57
+ "memory(GiB)": 73.74,
58
+ "step": 20,
59
+ "train_speed(iter/s)": 0.032624
60
+ },
61
+ {
62
+ "acc": 0.86872597,
63
+ "epoch": 0.5617977528089888,
64
+ "grad_norm": 5.739918942992134,
65
+ "learning_rate": 9.889704834236431e-06,
66
+ "loss": 0.67363873,
67
+ "memory(GiB)": 73.74,
68
+ "step": 25,
69
+ "train_speed(iter/s)": 0.03277
70
+ },
71
+ {
72
+ "acc": 0.87583218,
73
+ "epoch": 0.6741573033707865,
74
+ "grad_norm": 4.32721377918037,
75
+ "learning_rate": 9.797485121585682e-06,
76
+ "loss": 0.74702172,
77
+ "memory(GiB)": 73.74,
78
+ "step": 30,
79
+ "train_speed(iter/s)": 0.032865
80
+ },
81
+ {
82
+ "acc": 0.9008894,
83
+ "epoch": 0.7865168539325843,
84
+ "grad_norm": 4.562714773064729,
85
+ "learning_rate": 9.678181514584457e-06,
86
+ "loss": 0.54894347,
87
+ "memory(GiB)": 73.74,
88
+ "step": 35,
89
+ "train_speed(iter/s)": 0.032932
90
+ },
91
+ {
92
+ "acc": 0.90051165,
93
+ "epoch": 0.898876404494382,
94
+ "grad_norm": 13.503139801961135,
95
+ "learning_rate": 9.532467604291679e-06,
96
+ "loss": 0.62093091,
97
+ "memory(GiB)": 73.74,
98
+ "step": 40,
99
+ "train_speed(iter/s)": 0.032984
100
+ },
101
+ {
102
+ "acc": 0.8186779,
103
+ "epoch": 1.0,
104
+ "grad_norm": 6.94765792847355,
105
+ "learning_rate": 9.397429019156841e-06,
106
+ "loss": 0.47887707,
107
+ "memory(GiB)": 73.74,
108
+ "step": 45,
109
+ "train_speed(iter/s)": 0.03339
110
+ },
111
+ {
112
+ "acc": 0.90204411,
113
+ "epoch": 1.1123595505617978,
114
+ "grad_norm": 5.053805856749545,
115
+ "learning_rate": 9.206347037389492e-06,
116
+ "loss": 0.55135803,
117
+ "memory(GiB)": 73.74,
118
+ "step": 50,
119
+ "train_speed(iter/s)": 0.033362
120
+ },
121
+ {
122
+ "acc": 0.90205927,
123
+ "epoch": 1.2247191011235956,
124
+ "grad_norm": 4.031404833953091,
125
+ "learning_rate": 8.991518741233478e-06,
126
+ "loss": 0.53315639,
127
+ "memory(GiB)": 73.74,
128
+ "step": 55,
129
+ "train_speed(iter/s)": 0.033361
130
+ },
131
+ {
132
+ "acc": 0.89569025,
133
+ "epoch": 1.3370786516853932,
134
+ "grad_norm": 4.80807450740523,
135
+ "learning_rate": 8.754157056459702e-06,
136
+ "loss": 0.58139644,
137
+ "memory(GiB)": 73.74,
138
+ "step": 60,
139
+ "train_speed(iter/s)": 0.033359
140
+ },
141
+ {
142
+ "acc": 0.89294872,
143
+ "epoch": 1.449438202247191,
144
+ "grad_norm": 2.4132119888812698,
145
+ "learning_rate": 8.495602132897754e-06,
146
+ "loss": 0.59313574,
147
+ "memory(GiB)": 73.74,
148
+ "step": 65,
149
+ "train_speed(iter/s)": 0.033356
150
+ },
151
+ {
152
+ "acc": 0.89750004,
153
+ "epoch": 1.5617977528089888,
154
+ "grad_norm": 3.83237148706138,
155
+ "learning_rate": 8.21731377791749e-06,
156
+ "loss": 0.53816686,
157
+ "memory(GiB)": 73.74,
158
+ "step": 70,
159
+ "train_speed(iter/s)": 0.033357
160
+ },
161
+ {
162
+ "acc": 0.90059528,
163
+ "epoch": 1.6741573033707864,
164
+ "grad_norm": 4.066079361707885,
165
+ "learning_rate": 7.920863214321187e-06,
166
+ "loss": 0.54892931,
167
+ "memory(GiB)": 73.74,
168
+ "step": 75,
169
+ "train_speed(iter/s)": 0.033355
170
+ },
171
+ {
172
+ "acc": 0.908568,
173
+ "epoch": 1.7865168539325844,
174
+ "grad_norm": 4.4036447401323455,
175
+ "learning_rate": 7.607924209181516e-06,
176
+ "loss": 0.50489616,
177
+ "memory(GiB)": 73.74,
178
+ "step": 80,
179
+ "train_speed(iter/s)": 0.033354
180
+ },
181
+ {
182
+ "acc": 0.91108637,
183
+ "epoch": 1.898876404494382,
184
+ "grad_norm": 2.303374188105592,
185
+ "learning_rate": 7.280263623712031e-06,
186
+ "loss": 0.46924047,
187
+ "memory(GiB)": 73.74,
188
+ "step": 85,
189
+ "train_speed(iter/s)": 0.033354
190
+ },
191
+ {
192
+ "acc": 0.81755037,
193
+ "epoch": 2.0,
194
+ "grad_norm": 3.6316429893731392,
195
+ "learning_rate": 6.93973143752592e-06,
196
+ "loss": 0.45278177,
197
+ "memory(GiB)": 73.74,
198
+ "step": 90,
199
+ "train_speed(iter/s)": 0.033536
200
+ },
201
+ {
202
+ "acc": 0.9171875,
203
+ "epoch": 2.1123595505617976,
204
+ "grad_norm": 2.43556110559636,
205
+ "learning_rate": 6.588250303606212e-06,
206
+ "loss": 0.46200504,
207
+ "memory(GiB)": 73.74,
208
+ "step": 95,
209
+ "train_speed(iter/s)": 0.033514
210
+ },
211
+ {
212
+ "acc": 0.91527672,
213
+ "epoch": 2.2247191011235956,
214
+ "grad_norm": 3.160658304441712,
215
+ "learning_rate": 6.2278046929604265e-06,
216
+ "loss": 0.46762981,
217
+ "memory(GiB)": 73.74,
218
+ "step": 100,
219
+ "train_speed(iter/s)": 0.033505
220
+ },
221
+ {
222
+ "acc": 0.91525297,
223
+ "epoch": 2.337078651685393,
224
+ "grad_norm": 3.4672725798628012,
225
+ "learning_rate": 5.860429690249112e-06,
226
+ "loss": 0.46896749,
227
+ "memory(GiB)": 73.74,
228
+ "step": 105,
229
+ "train_speed(iter/s)": 0.033496
230
+ },
231
+ {
232
+ "acc": 0.91085396,
233
+ "epoch": 2.449438202247191,
234
+ "grad_norm": 4.264836814343864,
235
+ "learning_rate": 5.488199503648495e-06,
236
+ "loss": 0.49584384,
237
+ "memory(GiB)": 73.74,
238
+ "step": 110,
239
+ "train_speed(iter/s)": 0.033488
240
+ },
241
+ {
242
+ "acc": 0.91369057,
243
+ "epoch": 2.561797752808989,
244
+ "grad_norm": 1.8519201548674813,
245
+ "learning_rate": 5.113215753820809e-06,
246
+ "loss": 0.45219369,
247
+ "memory(GiB)": 74.75,
248
+ "step": 115,
249
+ "train_speed(iter/s)": 0.033481
250
+ },
251
+ {
252
+ "acc": 0.9125,
253
+ "epoch": 2.6741573033707864,
254
+ "grad_norm": 4.899506906273797,
255
+ "learning_rate": 4.737595608113059e-06,
256
+ "loss": 0.4595274,
257
+ "memory(GiB)": 74.75,
258
+ "step": 120,
259
+ "train_speed(iter/s)": 0.033476
260
+ },
261
+ {
262
+ "acc": 0.90626717,
263
+ "epoch": 2.7865168539325844,
264
+ "grad_norm": 2.3927675084287645,
265
+ "learning_rate": 4.363459826978817e-06,
266
+ "loss": 0.49834228,
267
+ "memory(GiB)": 74.75,
268
+ "step": 125,
269
+ "train_speed(iter/s)": 0.033471
270
+ },
271
+ {
272
+ "acc": 0.92366066,
273
+ "epoch": 2.898876404494382,
274
+ "grad_norm": 2.463284179520905,
275
+ "learning_rate": 3.9929207901132785e-06,
276
+ "loss": 0.39038134,
277
+ "memory(GiB)": 74.75,
278
+ "step": 130,
279
+ "train_speed(iter/s)": 0.033466
280
+ },
281
+ {
282
+ "acc": 0.81810102,
283
+ "epoch": 3.0,
284
+ "grad_norm": 2.4652024602525677,
285
+ "learning_rate": 3.700486073914168e-06,
286
+ "loss": 0.40796843,
287
+ "memory(GiB)": 74.75,
288
+ "step": 135,
289
+ "train_speed(iter/s)": 0.033586
290
+ },
291
+ {
292
+ "acc": 0.91892242,
293
+ "epoch": 3.1123595505617976,
294
+ "grad_norm": 2.7719335270024406,
295
+ "learning_rate": 3.3416720076404165e-06,
296
+ "loss": 0.40879712,
297
+ "memory(GiB)": 74.75,
298
+ "step": 140,
299
+ "train_speed(iter/s)": 0.033569
300
+ },
301
+ {
302
+ "acc": 0.9270833,
303
+ "epoch": 3.2247191011235956,
304
+ "grad_norm": 1.9611434725282086,
305
+ "learning_rate": 2.99222372444748e-06,
306
+ "loss": 0.41382871,
307
+ "memory(GiB)": 74.75,
308
+ "step": 145,
309
+ "train_speed(iter/s)": 0.033562
310
+ },
311
+ {
312
+ "acc": 0.92385416,
313
+ "epoch": 3.337078651685393,
314
+ "grad_norm": 2.8780597897464637,
315
+ "learning_rate": 2.6541142178183634e-06,
316
+ "loss": 0.39298267,
317
+ "memory(GiB)": 74.75,
318
+ "step": 150,
319
+ "train_speed(iter/s)": 0.033551
320
+ },
321
+ {
322
+ "acc": 0.9191987,
323
+ "epoch": 3.449438202247191,
324
+ "grad_norm": 3.7005032328018257,
325
+ "learning_rate": 2.329252462228559e-06,
326
+ "loss": 0.44139132,
327
+ "memory(GiB)": 74.75,
328
+ "step": 155,
329
+ "train_speed(iter/s)": 0.033545
330
+ },
331
+ {
332
+ "acc": 0.92789841,
333
+ "epoch": 3.561797752808989,
334
+ "grad_norm": 3.204039430908735,
335
+ "learning_rate": 2.019472635029862e-06,
336
+ "loss": 0.36037457,
337
+ "memory(GiB)": 74.75,
338
+ "step": 160,
339
+ "train_speed(iter/s)": 0.033535
340
+ },
341
+ {
342
+ "acc": 0.92560101,
343
+ "epoch": 3.6741573033707864,
344
+ "grad_norm": 2.2869606081065506,
345
+ "learning_rate": 1.7265237606405478e-06,
346
+ "loss": 0.39443879,
347
+ "memory(GiB)": 74.75,
348
+ "step": 165,
349
+ "train_speed(iter/s)": 0.03353
350
+ },
351
+ {
352
+ "acc": 0.9338542,
353
+ "epoch": 3.7865168539325844,
354
+ "grad_norm": 2.4065886112138943,
355
+ "learning_rate": 1.4520598355110829e-06,
356
+ "loss": 0.36085033,
357
+ "memory(GiB)": 74.75,
358
+ "step": 170,
359
+ "train_speed(iter/s)": 0.033524
360
+ },
361
+ {
362
+ "acc": 0.92566967,
363
+ "epoch": 3.898876404494382,
364
+ "grad_norm": 2.082750093607268,
365
+ "learning_rate": 1.1976304896200528e-06,
366
+ "loss": 0.38640497,
367
+ "memory(GiB)": 74.75,
368
+ "step": 175,
369
+ "train_speed(iter/s)": 0.033518
370
+ },
371
+ {
372
+ "acc": 0.8370594,
373
+ "epoch": 4.0,
374
+ "grad_norm": 2.5249629065672883,
375
+ "learning_rate": 9.64672237225702e-07,
376
+ "loss": 0.32685859,
377
+ "memory(GiB)": 74.75,
378
+ "step": 180,
379
+ "train_speed(iter/s)": 0.033605
380
+ },
381
+ {
382
+ "acc": 0.9390625,
383
+ "epoch": 4.112359550561798,
384
+ "grad_norm": 1.8419541872377712,
385
+ "learning_rate": 7.545003662716096e-07,
386
+ "loss": 0.32183304,
387
+ "memory(GiB)": 74.75,
388
+ "step": 185,
389
+ "train_speed(iter/s)": 0.033592
390
+ },
391
+ {
392
+ "acc": 0.93617792,
393
+ "epoch": 4.224719101123595,
394
+ "grad_norm": 2.5663433640548448,
395
+ "learning_rate": 5.683015122390326e-07,
396
+ "loss": 0.32805934,
397
+ "memory(GiB)": 74.75,
398
+ "step": 190,
399
+ "train_speed(iter/s)": 0.033585
400
+ },
401
+ {
402
+ "acc": 0.95014877,
403
+ "epoch": 4.337078651685394,
404
+ "grad_norm": 2.75420957077066,
405
+ "learning_rate": 4.071269583742181e-07,
406
+ "loss": 0.29385498,
407
+ "memory(GiB)": 74.75,
408
+ "step": 195,
409
+ "train_speed(iter/s)": 0.033578
410
+ },
411
+ {
412
+ "acc": 0.92983627,
413
+ "epoch": 4.449438202247191,
414
+ "grad_norm": 3.2025724539840863,
415
+ "learning_rate": 2.718867001176766e-07,
416
+ "loss": 0.35593481,
417
+ "memory(GiB)": 74.75,
418
+ "step": 200,
419
+ "train_speed(iter/s)": 0.033572
420
+ },
421
+ {
422
+ "epoch": 4.449438202247191,
423
+ "eval_acc": 0.8987898789878987,
424
+ "eval_loss": 0.2907775938510895,
425
+ "eval_runtime": 23.6124,
426
+ "eval_samples_per_second": 1.567,
427
+ "eval_steps_per_second": 0.212,
428
+ "step": 200
429
+ }
430
+ ],
431
+ "logging_steps": 5,
432
+ "max_steps": 220,
433
+ "num_input_tokens_seen": 0,
434
+ "num_train_epochs": 5,
435
+ "save_steps": 200,
436
+ "stateful_callbacks": {
437
+ "TrainerControl": {
438
+ "args": {
439
+ "should_epoch_stop": false,
440
+ "should_evaluate": false,
441
+ "should_log": false,
442
+ "should_save": true,
443
+ "should_training_stop": false
444
+ },
445
+ "attributes": {}
446
+ }
447
+ },
448
+ "total_flos": 476842183622656.0,
449
+ "train_batch_size": 1,
450
+ "trial_name": null,
451
+ "trial_params": null
452
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11630f186a479ff850ce3160c1f97829352e29d052e6d1a423e721b6b3f77210
3
+ size 10680
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)