import tensorflow as tf | |
from fastapi import FastAPI | |
from PIL import Image | |
import numpy as np | |
class BrainTumorDetector: | |
def __init__(self, model_path): | |
self.model = tf.keras.models.load_model(model_path) | |
def predict(self, image: Image.Image): | |
image = image.resize((224, 224)) # Adjust size as per your model | |
image_array = np.array(image) / 255.0 # Normalize | |
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension | |
predictions = self.model.predict(image_array) | |
return predictions | |
# Initialize the model detector (this path will be relative to your model repository) | |
detector = BrainTumorDetector("Brain_tumor_pred.h5") | |