metadata
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-common_voice-tr-ft
results: []
wav2vec2-large-xls-r-300m-common_voice-tr-ft
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:
- Loss: 0.3644
- Wer: 0.3394
- Cer: 0.0811
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.6613 | 4.59 | 500 | 0.8079 | 0.8542 | 0.2504 |
1.3496 | 9.17 | 1000 | 0.4729 | 0.5968 | 0.1518 |
1.1003 | 13.76 | 1500 | 0.4106 | 0.5225 | 0.1357 |
1.1532 | 18.35 | 2000 | 0.3957 | 0.4978 | 0.1256 |
1.0305 | 22.94 | 2500 | 0.3764 | 0.5008 | 0.1291 |
0.8303 | 27.52 | 3000 | 0.3826 | 0.5113 | 0.1292 |
0.9115 | 32.11 | 3500 | 0.3819 | 0.4324 | 0.1070 |
0.8193 | 36.7 | 4000 | 0.3694 | 0.4223 | 0.1036 |
0.8948 | 41.28 | 4500 | 0.3714 | 0.4100 | 0.1005 |
0.774 | 45.87 | 5000 | 0.3558 | 0.3923 | 0.0971 |
0.8194 | 50.46 | 5500 | 0.3729 | 0.4603 | 0.1180 |
0.8616 | 55.05 | 6000 | 0.3616 | 0.3908 | 0.0963 |
0.7901 | 59.63 | 6500 | 0.3575 | 0.3837 | 0.0952 |
0.778 | 64.22 | 7000 | 0.3732 | 0.3790 | 0.0928 |
0.7238 | 68.81 | 7500 | 0.3674 | 0.3734 | 0.0904 |
0.6985 | 73.39 | 8000 | 0.3627 | 0.3615 | 0.0863 |
0.5889 | 77.98 | 8500 | 0.3705 | 0.3548 | 0.0858 |
0.5447 | 82.57 | 9000 | 0.3678 | 0.3534 | 0.0854 |
0.4763 | 87.16 | 9500 | 0.3627 | 0.3509 | 0.0840 |
0.3544 | 91.74 | 10000 | 0.3690 | 0.3495 | 0.0834 |
0.4879 | 96.33 | 10500 | 0.3683 | 0.3418 | 0.0820 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3