license: mit
language:
- ne
metrics:
- rouge
tags:
- Nepali summary
- Nepali bart
- Nepali
- summary
- text
- nepali text summary
pipeline_tag: text2text-generation
widget:
- text: >-
अत्यधिक माग भएका बेला दसैंमा चिनीको हाहाकार भएको थियो । उपत्यकाबाहिरका
केही जिल्लामा चिनी पाइए पनि काठमाडौंमा भने अभाव नै कायम रहेको छ ।
प्रधानमन्त्री पुष्पकमल दाहालले बिहीबार बिहान उद्योग तथा वाणिज्य मन्त्री
तथा मुख्यसचिवलाई चिनीको अभाव सिर्जना हुन नदिन सबै उपायको खोजी गर्न
निर्देशन दिएका थिए । नेपाली चिनी उद्योगहरूले आम उपभोक्तालाई सहज हुने
किसिमले बजारमा चिनी नपठाइ ठूला उद्योगलाई आपूर्ति गर्न गोदाममै राख्ने गरेको
पनि भेटिएको छ । वाणिज्य विभागको तथ्यांक अनुसार, नेपालमा उत्पादन हुने
चिनीको सत्तरी प्रतिशत चिनी बिभिन्न पेय पदार्थ, मिठाइ, चकलेट,
विस्कुटलगायतका उद्योगहरुमा आपूर्ति हुने गर्दछ । नेपाल प्रहरीले नेपालमा
रहेका सबै चिनी उद्योगको स्टक रेकर्ड चेक गर्ने तथा सो आधारमा बजारमा चिनी
पठाउन उद्योगीहरूसँग छलफल गरिने विभागले जनाएको छ ।
example_title: Example 1
Nep_Summ_BART:
This model is pre-trained using BART on Nepali corpus and then fine-tuned on Nepali summary data.
The model generates a summary for the text input.
The parameter size for the model is 101M.
Model Details
Model Description
The model is trained using BART noising techniques like sentence permutation, token deletion, and random token masking.
The noisy data is fed into the encoder of the transformer and the denoising task/ objective is fulfilled by the decoder of the transformer model.
Cross-entropy loss is used for both the pre-training and fine-tuning of the model.
The Loss for pre-training is as follows:
Epoch | Training Loss | Val Loss |
---|---|---|
1 | 0.8137 | 0.8010 |
2 | 0.7861 | 0.7524 |
3 | 0.7495 | 0.7290 |
The ROUGE Score after the fine-tuning, for the BBC XLSum Nepali Test Dataset is:
ROUGE1 : 0.177
ROUGE2 : 0.059
ROUGEL : 0.154
Uses
You can use this model for text summarization.
How to Get Started with the Model
Use the code below to get started with the model.
import torch
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("pascalrai/nep_summ_BART")
model = AutoModelForSeq2SeqLM.from_pretrained("pascalrai/nep_summ_BART")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sentence = """अत्यधिक माग भएका बेला दसैंमा चिनीको हाहाकार भएको थियो । उपत्यकाबाहिरका केही जिल्लामा चिनी पाइए पनि काठमाडौंमा भने अभाव नै कायम रहेको छ । प्रधानमन्त्री पुष्पकमल दाहालले बिहीबार बिहान उद्योग तथा वाणिज्य मन्त्री तथा मुख्यसचिवलाई चिनीको अभाव सिर्जना हुन नदिन सबै उपायको खोजी गर्न निर्देशन दिएका थिए ।
नेपाली चिनी उद्योगहरूले आम उपभोक्तालाई सहज हुने किसिमले बजारमा चिनी नपठाइ ठूला उद्योगलाई आपूर्ति गर्न गोदाममै राख्ने गरेको पनि भेटिएको छ । वाणिज्य विभागको तथ्यांक अनुसार, नेपालमा उत्पादन हुने चिनीको सत्तरी प्रतिशत चिनी बिभिन्न पेय पदार्थ, मिठाइ, चकलेट, विस्कुटलगायतका उद्योगहरुमा आपूर्ति हुने गर्दछ ।
नेपाल प्रहरीले नेपालमा रहेका सबै चिनी उद्योगको स्टक रेकर्ड चेक गर्ने तथा सो आधारमा बजारमा चिनी पठाउन उद्योगीहरूसँग छलफल गरिने विभागले जनाएको छ"""
inputs = tokenizer(sentence, max_length=1000, return_tensors="pt")
summary_ids = model.to(device).generate(inputs["input_ids"].to(device))
tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
'दशैंको मुखमा चिनीको चरम अभाव भएको भन्दै नेपाल प्रहरीले सबै चिनी उद्योगको स्टक रेकर्ड चेक गर्ने र बजारमा चिनी पठाउन उद्योगीहरूसँग छलफल गर्ने जनाएको छ।'
Hardware
The model was trained continuously on a single A10G GPU in an AWS instance for 133 hours with each epoch taking 45 hours.
Authors:
Vijaya Bhatta
Pascal Rai
Niranjan Shrestha
Dristi Sigdel
Sujan Neupane
Sagar Kafle