|
--- |
|
license: apache-2.0 |
|
base_model: HooshvareLab/bert-fa-zwnj-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ParsBERT-nli-FarsTail-FarSick |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ParsBERT-nli-FarsTail-FarSick |
|
|
|
This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on the [FarsTail](https://github.com/dml-qom/FarsTail/tree/master) |
|
and [FarSick](https://github.com/ZahraGhasemi-AI/FarSick/tree/main) datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8730 |
|
- Accuracy: 0.8055 |
|
- Precision (macro): 0.7900 |
|
- Precision (micro): 0.8055 |
|
- Recall (macro): 0.7926 |
|
- Recall (micro): 0.7926 |
|
- F1 (macro): 0.7909 |
|
- F1 (micro): 0.8055 |
|
|
|
## How to use |
|
|
|
``` python |
|
import torch |
|
import transformers |
|
|
|
model_name_or_path = "parsi-ai-nlpclass/ParsBERT-nli-FarsTail-FarSick" |
|
config = transformers.AutoConfig.from_pretrained(model_name_or_path) |
|
tokenizer_pb = transformers.AutoTokenizer.from_pretrained(model_name_or_path) |
|
model_pb = transformers.AutoModelForSequenceClassification.from_pretrained(model_name_or_path, |
|
num_labels=3) |
|
premise = "سلام خوبی؟" |
|
hypothesis = "آره خوبم" |
|
print(model_pb(**tokenizer_pb(premise, hypothesis, return_tensors='pt'))) |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision (macro) | Precision (micro) | Recall (macro) | Recall (micro) | F1 (macro) | F1 (micro) | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:-----------------:|:--------------:|:--------------:|:----------:|:----------:| |
|
| 0.6248 | 1.0 | 1137 | 0.5391 | 0.7768 | 0.7677 | 0.7768 | 0.7728 | 0.7728 | 0.7647 | 0.7768 | |
|
| 0.4449 | 2.0 | 2274 | 0.5017 | 0.8055 | 0.7909 | 0.8055 | 0.7963 | 0.7963 | 0.7932 | 0.8055 | |
|
| 0.304 | 3.0 | 3411 | 0.5851 | 0.8125 | 0.8006 | 0.8125 | 0.7979 | 0.7979 | 0.7985 | 0.8125 | |
|
| 0.1844 | 4.0 | 4548 | 0.7549 | 0.8140 | 0.8010 | 0.8140 | 0.7982 | 0.7982 | 0.7993 | 0.8140 | |
|
| 0.1224 | 5.0 | 5685 | 0.8730 | 0.8055 | 0.7900 | 0.8055 | 0.7926 | 0.7926 | 0.7909 | 0.8055 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|