|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- absa |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: yg sama. Rasanya konsisten dari dulu:Kalo ke Bandung, wajib banget nyobain |
|
makan siang disini. Tempatnya selalu ramee walau cabangnya ada bbrp di 1 jalan |
|
yg sama. Rasanya konsisten dari dulu mah, enakkk! Ayam bakar sama sayur asem wajib |
|
dipesen. Dan sambelnya yg selalu juara pedesnya, siap2 keringetan |
|
- text: jam lebih dan tempatnya panas. Makanannya:Di satu deretan ada 3 warung bu |
|
imas dan rame semua Nunggu makan dateng sekitar 1 jam lebih dan tempatnya panas. |
|
Makanannya sebenarnya enak2 semua tapi kalo harus antri lama dan temptnya kurang |
|
oke mending cari warung makan sunda lain |
|
- text: Dari makanan yang luar biasa:Dari makanan yang luar biasa, hingga suasana |
|
yang hangat, hingga layanan yang ramah, tempat lingkungan pusat kota ini tidak |
|
ketinggalan. |
|
- text: Favorite sambal terasi dadak di Bandung sejauh:Favorite sambal terasi dadak |
|
di Bandung sejauh ini Harganya pun ramah. Next time balik lagi. |
|
- text: ayam goreng/ati-ampela goreng gurih asinnya pas:Rasa ayam goreng/ati-ampela |
|
goreng gurih asinnya pas, sayur asem yang isinya banyak dan ras asam-manisnya |
|
nyambung, dan sambal leunca-nya enak beutullll.... Pakai petai dan tempe/tahu |
|
lebih sempurna. |
|
pipeline_tag: text-classification |
|
inference: false |
|
model-index: |
|
- name: SetFit Polarity Model |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8636363636363636 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit Polarity Model |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
This model was trained within the context of a larger system for ABSA, which looks like so: |
|
|
|
1. Use a spaCy model to select possible aspect span candidates. |
|
2. Use a SetFit model to filter these possible aspect span candidates. |
|
3. **Use this SetFit model to classify the filtered aspect span candidates.** |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **spaCy Model:** id_core_news_trf |
|
- **SetFitABSA Aspect Model:** [pahri/setfit-indo-resto-RM-ibu-imas-aspect](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-aspect) |
|
- **SetFitABSA Polarity Model:** [pahri/setfit-indo-resto-RM-ibu-imas-polarity](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-polarity) |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| positive | <ul><li>'air krispi dan ayam bakar:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'Ayam bakar,sambel leunca:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li><li>',sambel leunca sambel terasi merah enak banget 9:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li></ul> | |
|
| negative | <ul><li>', minus di menu tidak di cantumkan:Makanan biasa saja, minus di menu tidak di cantumkan harga. Posi nasi standar, kelebihan sambal sudah disediakan di mangkok. '</li><li>'lebih diatur kah antriannya, kayanya pakai:It wasnt bad food at all. Tapi please mungkin bisa lebih diatur kah antriannya, kayanya pakai waiting list gak sesulit itu deh.'</li><li>'rasanya standar. Harga bisa dibilang murah:Tahu tempe perkedel rasanya standar. Harga bisa dibilang murah. Kalau yang masih penasaran ya boleh dateng coba tapi menurut saya overall biasa saja, tidak nemu wah nya dimana..'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8636 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import AbsaModel |
|
|
|
# Download from the 🤗 Hub |
|
model = AbsaModel.from_pretrained( |
|
"pahri/setfit-indo-resto-RM-ibu-imas-aspect", |
|
"pahri/setfit-indo-resto-RM-ibu-imas-polarity", |
|
) |
|
# Run inference |
|
preds = model("The food was great, but the venue is just way too busy.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 7 | 35.3922 | 90 | |
|
|
|
| Label | Training Sample Count | |
|
|:--------|:----------------------| |
|
| konflik | 0 | |
|
| negatif | 0 | |
|
| netral | 0 | |
|
| positif | 0 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (6, 6) |
|
- num_epochs: (1, 16) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: True |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0036 | 1 | 0.2676 | - | |
|
| 0.1799 | 50 | 0.0064 | - | |
|
| 0.3597 | 100 | 0.0015 | - | |
|
| 0.5396 | 150 | 0.0007 | - | |
|
| 0.7194 | 200 | 0.0005 | - | |
|
| 0.8993 | 250 | 0.0006 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.7.0 |
|
- spaCy: 3.7.4 |
|
- Transformers: 4.36.2 |
|
- PyTorch: 2.1.2 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |