summarizer / README.md
pablo-chocobar's picture
update model card README.md
f0c577b
|
raw
history blame
2.12 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - multi_news
metrics:
  - rouge
model-index:
  - name: summarizer
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: multi_news
          type: multi_news
          config: default
          split: test
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.1434

summarizer

This model is a fine-tuned version of t5-small on the multi_news dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7745
  • Rouge1: 0.1434
  • Rouge2: 0.0448
  • Rougel: 0.1097
  • Rougelsum: 0.1097
  • Gen Len: 18.9968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 352 2.8572 0.1386 0.0423 0.106 0.106 18.9968
3.2016 2.0 704 2.8029 0.1415 0.0435 0.108 0.108 18.9966
3.0361 3.0 1056 2.7814 0.143 0.0446 0.1093 0.1093 18.9968
3.0361 4.0 1408 2.7745 0.1434 0.0448 0.1097 0.1097 18.9968

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2