|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: emilyalsentzer/Bio_ClinicalBERT |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: BioMedRoBERTa-finetuned-ner-pablo-just-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BioMedRoBERTa-finetuned-ner-pablo-just-classifier |
|
|
|
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1228 |
|
- Precision: 0.6701 |
|
- Recall: 0.6809 |
|
- F1: 0.6754 |
|
- Accuracy: 0.9657 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.01 |
|
- train_batch_size: 512 |
|
- eval_batch_size: 512 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 2048 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9697 | 16 | 0.2938 | 0.4425 | 0.5130 | 0.4751 | 0.9361 | |
|
| No log | 2.0 | 33 | 0.1815 | 0.5546 | 0.5873 | 0.5705 | 0.9535 | |
|
| No log | 2.9697 | 49 | 0.1617 | 0.5838 | 0.6189 | 0.6008 | 0.9575 | |
|
| No log | 4.0 | 66 | 0.1482 | 0.6070 | 0.6396 | 0.6229 | 0.9602 | |
|
| No log | 4.9697 | 82 | 0.1340 | 0.6465 | 0.6563 | 0.6513 | 0.9633 | |
|
| No log | 6.0 | 99 | 0.1306 | 0.6561 | 0.6638 | 0.6599 | 0.9641 | |
|
| No log | 6.9697 | 115 | 0.1290 | 0.6569 | 0.6705 | 0.6636 | 0.9645 | |
|
| No log | 8.0 | 132 | 0.1246 | 0.6664 | 0.6794 | 0.6728 | 0.9654 | |
|
| No log | 8.9697 | 148 | 0.1230 | 0.6699 | 0.6793 | 0.6745 | 0.9656 | |
|
| No log | 9.6970 | 160 | 0.1228 | 0.6701 | 0.6809 | 0.6754 | 0.9657 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.1 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|