pabRomero's picture
Training complete
1db2c8e verified
|
raw
history blame
2.19 kB
metadata
license: mit
base_model: emilyalsentzer/Bio_ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioClinicalBERT-full-finetuned-ner-pablo
    results: []

BioClinicalBERT-full-finetuned-ner-pablo

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1136
  • Precision: 0.8112
  • Recall: 0.8083
  • F1: 0.8098
  • Accuracy: 0.9747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2583 0.9990 781 0.0983 0.7777 0.7768 0.7773 0.9721
0.0794 1.9994 1563 0.0944 0.7819 0.7879 0.7849 0.9736
0.0614 2.9997 2345 0.0913 0.7861 0.8018 0.7939 0.9733
0.0408 4.0 3127 0.1031 0.8007 0.8006 0.8006 0.9736
0.0298 4.9952 3905 0.1136 0.8112 0.8083 0.8098 0.9747

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1