|
--- |
|
license: cc-by-sa-4.0 |
|
base_model: retrieva-jp/t5-base-long |
|
tags: |
|
- generated_from_trainer |
|
- summarization |
|
datasets: |
|
- csebuetnlp/xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-xlsum-ja |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: csebuetnlp/xlsum |
|
type: xlsum |
|
config: japanese |
|
split: test |
|
args: japanese |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.3648008957585529 |
|
- name: Rouge2 |
|
type: rouge |
|
value: 0.16411161798042992 |
|
language: |
|
- ja |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-xlsum-ja |
|
|
|
This model is a fine-tuned version of [retrieva-jp/t5-base-long](https://huggingface.co/retrieva-jp/t5-base-long) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6563 |
|
- Rouge1: 0.3648 |
|
- Rouge2: 0.1641 |
|
- Rougel: 0.2965 |
|
- Rougelsum: 0.3132 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 4.9166 | 1.8 | 100 | 3.4095 | 0.3569 | 0.1509 | 0.2416 | 0.3209 | |
|
| 4.1162 | 3.61 | 200 | 3.0980 | 0.3262 | 0.1354 | 0.2557 | 0.2805 | |
|
| 3.8578 | 5.41 | 300 | 2.8853 | 0.3428 | 0.1445 | 0.2628 | 0.2881 | |
|
| 3.7309 | 7.22 | 400 | 2.7714 | 0.3621 | 0.1615 | 0.2951 | 0.3151 | |
|
| 3.6716 | 9.02 | 500 | 2.7042 | 0.3727 | 0.1668 | 0.2982 | 0.3225 | |
|
| 3.6393 | 10.82 | 600 | 2.6666 | 0.3676 | 0.1592 | 0.2987 | 0.3206 | |
|
| 3.6291 | 12.63 | 700 | 2.6587 | 0.3654 | 0.1576 | 0.2955 | 0.3108 | |
|
| 3.6224 | 14.43 | 800 | 2.6563 | 0.3648 | 0.1641 | 0.2965 | 0.3132 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |