Upload 2 files
Browse files- loss_fn.py +201 -0
- modeling_siglip.py +83 -0
loss_fn.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/Alibaba-MIIL/ASL/blob/main/src/loss_functions/losses.py
|
2 |
+
|
3 |
+
# MIT License
|
4 |
+
|
5 |
+
# Copyright (c) 2020 Alibaba-MIIL
|
6 |
+
|
7 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
8 |
+
# of this software and associated documentation files (the "Software"), to deal
|
9 |
+
# in the Software without restriction, including without limitation the rights
|
10 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
11 |
+
# copies of the Software, and to permit persons to whom the Software is
|
12 |
+
# furnished to do so, subject to the following conditions:
|
13 |
+
|
14 |
+
# The above copyright notice and this permission notice shall be included in all
|
15 |
+
# copies or substantial portions of the Software.
|
16 |
+
|
17 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
18 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
19 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
20 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
21 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
22 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
23 |
+
# SOFTWARE.
|
24 |
+
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
|
29 |
+
|
30 |
+
class AsymmetricLoss(nn.Module):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
gamma_neg=4,
|
34 |
+
gamma_pos=1,
|
35 |
+
clip=0.05,
|
36 |
+
eps=1e-8,
|
37 |
+
disable_torch_grad_focal_loss=True,
|
38 |
+
):
|
39 |
+
super(AsymmetricLoss, self).__init__()
|
40 |
+
|
41 |
+
self.gamma_neg = gamma_neg
|
42 |
+
self.gamma_pos = gamma_pos
|
43 |
+
self.clip = clip
|
44 |
+
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
45 |
+
self.eps = eps
|
46 |
+
|
47 |
+
def forward(self, x, y):
|
48 |
+
""" "
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
x: input logits
|
52 |
+
y: targets (multi-label binarized vector)
|
53 |
+
"""
|
54 |
+
|
55 |
+
# Calculating Probabilities
|
56 |
+
x_sigmoid = torch.sigmoid(x)
|
57 |
+
xs_pos = x_sigmoid
|
58 |
+
xs_neg = 1 - x_sigmoid
|
59 |
+
|
60 |
+
# Asymmetric Clipping
|
61 |
+
if self.clip is not None and self.clip > 0:
|
62 |
+
xs_neg = (xs_neg + self.clip).clamp(max=1)
|
63 |
+
|
64 |
+
# Basic CE calculation
|
65 |
+
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
|
66 |
+
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
|
67 |
+
loss = los_pos + los_neg
|
68 |
+
|
69 |
+
# Asymmetric Focusing
|
70 |
+
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
71 |
+
if self.disable_torch_grad_focal_loss:
|
72 |
+
torch.set_grad_enabled(False)
|
73 |
+
pt0 = xs_pos * y
|
74 |
+
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p
|
75 |
+
pt = pt0 + pt1
|
76 |
+
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
|
77 |
+
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
|
78 |
+
if self.disable_torch_grad_focal_loss:
|
79 |
+
torch.set_grad_enabled(True)
|
80 |
+
loss *= one_sided_w
|
81 |
+
|
82 |
+
return -loss.sum()
|
83 |
+
|
84 |
+
|
85 |
+
class AsymmetricLossOptimized(nn.Module):
|
86 |
+
"""Notice - optimized version, minimizes memory allocation and gpu uploading,
|
87 |
+
favors inplace operations"""
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
gamma_neg=4,
|
92 |
+
gamma_pos=1,
|
93 |
+
clip=0.05,
|
94 |
+
eps=1e-8,
|
95 |
+
disable_torch_grad_focal_loss=False,
|
96 |
+
):
|
97 |
+
super(AsymmetricLossOptimized, self).__init__()
|
98 |
+
|
99 |
+
self.gamma_neg = gamma_neg
|
100 |
+
self.gamma_pos = gamma_pos
|
101 |
+
self.clip = clip
|
102 |
+
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
103 |
+
self.eps = eps
|
104 |
+
|
105 |
+
# prevent memory allocation and gpu uploading every iteration, and encourages inplace operations
|
106 |
+
self.targets = self.anti_targets = self.xs_pos = self.xs_neg = (
|
107 |
+
self.asymmetric_w
|
108 |
+
) = self.loss = None
|
109 |
+
|
110 |
+
def forward(self, x, y):
|
111 |
+
""" "
|
112 |
+
Parameters
|
113 |
+
----------
|
114 |
+
x: input logits
|
115 |
+
y: targets (multi-label binarized vector)
|
116 |
+
"""
|
117 |
+
|
118 |
+
self.targets = y
|
119 |
+
self.anti_targets = 1 - y
|
120 |
+
|
121 |
+
# Calculating Probabilities
|
122 |
+
self.xs_pos = torch.sigmoid(x)
|
123 |
+
self.xs_neg = 1.0 - self.xs_pos
|
124 |
+
|
125 |
+
# Asymmetric Clipping
|
126 |
+
if self.clip is not None and self.clip > 0:
|
127 |
+
self.xs_neg.add_(self.clip).clamp_(max=1)
|
128 |
+
|
129 |
+
# Basic CE calculation
|
130 |
+
self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps))
|
131 |
+
self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps)))
|
132 |
+
|
133 |
+
# Asymmetric Focusing
|
134 |
+
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
135 |
+
if self.disable_torch_grad_focal_loss:
|
136 |
+
torch.set_grad_enabled(False)
|
137 |
+
self.xs_pos = self.xs_pos * self.targets
|
138 |
+
self.xs_neg = self.xs_neg * self.anti_targets
|
139 |
+
self.asymmetric_w = torch.pow(
|
140 |
+
1 - self.xs_pos - self.xs_neg,
|
141 |
+
self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets,
|
142 |
+
)
|
143 |
+
if self.disable_torch_grad_focal_loss:
|
144 |
+
torch.set_grad_enabled(True)
|
145 |
+
self.loss *= self.asymmetric_w
|
146 |
+
|
147 |
+
return -self.loss.sum()
|
148 |
+
|
149 |
+
|
150 |
+
class ASLSingleLabel(nn.Module):
|
151 |
+
"""
|
152 |
+
This loss is intended for single-label classification problems
|
153 |
+
"""
|
154 |
+
|
155 |
+
def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction="mean"):
|
156 |
+
super(ASLSingleLabel, self).__init__()
|
157 |
+
|
158 |
+
self.eps = eps
|
159 |
+
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
160 |
+
self.targets_classes = []
|
161 |
+
self.gamma_pos = gamma_pos
|
162 |
+
self.gamma_neg = gamma_neg
|
163 |
+
self.reduction = reduction
|
164 |
+
|
165 |
+
def forward(self, inputs, target):
|
166 |
+
"""
|
167 |
+
"input" dimensions: - (batch_size,number_classes)
|
168 |
+
"target" dimensions: - (batch_size)
|
169 |
+
"""
|
170 |
+
num_classes = inputs.size()[-1]
|
171 |
+
log_preds = self.logsoftmax(inputs)
|
172 |
+
self.targets_classes = torch.zeros_like(inputs).scatter_(
|
173 |
+
1, target.long().unsqueeze(1), 1
|
174 |
+
)
|
175 |
+
|
176 |
+
# ASL weights
|
177 |
+
targets = self.targets_classes
|
178 |
+
anti_targets = 1 - targets
|
179 |
+
xs_pos = torch.exp(log_preds)
|
180 |
+
xs_neg = 1 - xs_pos
|
181 |
+
xs_pos = xs_pos * targets
|
182 |
+
xs_neg = xs_neg * anti_targets
|
183 |
+
asymmetric_w = torch.pow(
|
184 |
+
1 - xs_pos - xs_neg,
|
185 |
+
self.gamma_pos * targets + self.gamma_neg * anti_targets,
|
186 |
+
)
|
187 |
+
log_preds = log_preds * asymmetric_w
|
188 |
+
|
189 |
+
if self.eps > 0: # label smoothing
|
190 |
+
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(
|
191 |
+
self.eps / num_classes
|
192 |
+
)
|
193 |
+
|
194 |
+
# loss calculation
|
195 |
+
loss = -self.targets_classes.mul(log_preds)
|
196 |
+
|
197 |
+
loss = loss.sum(dim=-1)
|
198 |
+
if self.reduction == "mean":
|
199 |
+
loss = loss.mean()
|
200 |
+
|
201 |
+
return loss
|
modeling_siglip.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
6 |
+
|
7 |
+
from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig
|
8 |
+
from transformers.utils import ModelOutput
|
9 |
+
|
10 |
+
from loss_fn import AsymmetricLossOptimized
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class SiglipForImageClassifierOutput(ModelOutput):
|
15 |
+
loss: torch.FloatTensor | None = None
|
16 |
+
logits: torch.FloatTensor | None = None
|
17 |
+
pooler_output: torch.FloatTensor | None = None
|
18 |
+
hidden_states: tuple[torch.FloatTensor, ...] | None = None
|
19 |
+
attentions: tuple[torch.FloatTensor, ...] | None = None
|
20 |
+
|
21 |
+
|
22 |
+
class SiglipForImageClassification(SiglipPreTrainedModel):
|
23 |
+
config_class = SiglipVisionConfig
|
24 |
+
main_input_name = "pixel_values"
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
config,
|
29 |
+
):
|
30 |
+
super().__init__(config)
|
31 |
+
|
32 |
+
self.num_labels = config.num_labels
|
33 |
+
self.siglip = SiglipVisionModel(config)
|
34 |
+
|
35 |
+
# Classifier head
|
36 |
+
self.classifier = (
|
37 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
38 |
+
if config.num_labels > 0
|
39 |
+
else nn.Identity()
|
40 |
+
)
|
41 |
+
|
42 |
+
# Initialize weights and apply final processing
|
43 |
+
self.post_init()
|
44 |
+
|
45 |
+
def forward(
|
46 |
+
self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None
|
47 |
+
):
|
48 |
+
outputs = self.siglip(pixel_values)
|
49 |
+
pooler_output = outputs.pooler_output
|
50 |
+
logits = self.classifier(pooler_output)
|
51 |
+
|
52 |
+
loss = None
|
53 |
+
if labels is not None:
|
54 |
+
if self.config.problem_type is None:
|
55 |
+
if self.num_labels == 1:
|
56 |
+
self.config.problem_type = "regression"
|
57 |
+
elif self.num_labels > 1 and (
|
58 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
59 |
+
):
|
60 |
+
self.config.problem_type = "single_label_classification"
|
61 |
+
else:
|
62 |
+
self.config.problem_type = "multi_label_classification"
|
63 |
+
|
64 |
+
if self.config.problem_type == "regression":
|
65 |
+
loss_fct = MSELoss()
|
66 |
+
if self.num_labels == 1:
|
67 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
68 |
+
else:
|
69 |
+
loss = loss_fct(logits, labels)
|
70 |
+
elif self.config.problem_type == "single_label_classification":
|
71 |
+
loss_fct = CrossEntropyLoss()
|
72 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
73 |
+
elif self.config.problem_type == "multi_label_classification":
|
74 |
+
loss_fct = AsymmetricLossOptimized()
|
75 |
+
loss = loss_fct(logits, labels)
|
76 |
+
|
77 |
+
return SiglipForImageClassifierOutput(
|
78 |
+
loss=loss,
|
79 |
+
logits=logits,
|
80 |
+
pooler_output=outputs.pooler_output,
|
81 |
+
hidden_states=outputs.hidden_states,
|
82 |
+
attentions=outputs.attentions,
|
83 |
+
)
|