p1atdev commited on
Commit
0e19978
1 Parent(s): f27e326

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -4,11 +4,11 @@ base_model: microsoft/swinv2-base-patch4-window12-192-22k
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
- - imagefolder
8
  metrics:
9
  - accuracy
10
  model-index:
11
- - name: pvc-quality-swinv2-base-2
12
  results:
13
  - task:
14
  name: Image Classification
@@ -23,14 +23,15 @@ model-index:
23
  - name: Accuracy
24
  type: accuracy
25
  value: 0.5317220543806647
 
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
- # pvc-quality-swinv2-base-2
32
 
33
- This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-base-patch4-window12-192-22k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
  - Loss: 1.2396
36
  - Accuracy: 0.5317
@@ -84,4 +85,4 @@ The following hyperparameters were used during training:
84
  - Transformers 4.34.1
85
  - Pytorch 2.0.0+cu118
86
  - Datasets 2.14.5
87
- - Tokenizers 0.14.0
 
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
+ - p1atdev/pvc
8
  metrics:
9
  - accuracy
10
  model-index:
11
+ - name: pvc-quality-swinv2-base
12
  results:
13
  - task:
14
  name: Image Classification
 
23
  - name: Accuracy
24
  type: accuracy
25
  value: 0.5317220543806647
26
+ library_name: transformers
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
  should probably proofread and complete it, then remove this comment. -->
31
 
32
+ # pvc-quality-swinv2-base
33
 
34
+ This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-base-patch4-window12-192-22k) on the [pvc figure images dataset](https://huggingface.co/datasets/p1atdev/pvc).
35
  It achieves the following results on the evaluation set:
36
  - Loss: 1.2396
37
  - Accuracy: 0.5317
 
85
  - Transformers 4.34.1
86
  - Pytorch 2.0.0+cu118
87
  - Datasets 2.14.5
88
+ - Tokenizers 0.14.0