oxygeneDev commited on
Commit
c9dbe20
·
verified ·
1 Parent(s): ebcdd74

multilingual upgrade upload of language-detector

Browse files
.gitattributes CHANGED
@@ -1,35 +1,28 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
  *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
18
  *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
 
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
 
11
  *.model filter=lfs diff=lfs merge=lfs -text
12
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
13
  *.onnx filter=lfs diff=lfs merge=lfs -text
14
  *.ot filter=lfs diff=lfs merge=lfs -text
15
  *.parquet filter=lfs diff=lfs merge=lfs -text
16
  *.pb filter=lfs diff=lfs merge=lfs -text
 
 
17
  *.pt filter=lfs diff=lfs merge=lfs -text
18
  *.pth filter=lfs diff=lfs merge=lfs -text
19
  *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
 
21
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
22
  *.tflite filter=lfs diff=lfs merge=lfs -text
23
  *.tgz filter=lfs diff=lfs merge=lfs -text
 
24
  *.xz filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - ar
5
+ - bg
6
+ - de
7
+ - el
8
+ - en
9
+ - es
10
+ - fr
11
+ - hi
12
+ - it
13
+ - ja
14
+ - nl
15
+ - pl
16
+ - pt
17
+ - ru
18
+ - sw
19
+ - th
20
+ - tr
21
+ - ur
22
+ - vi
23
+ - zh
24
+ license: mit
25
+ tags:
26
+ - generated_from_trainer
27
+ datasets: papluca/language-identification
28
+ metrics:
29
+ - accuracy
30
+ - f1
31
+ base_model: xlm-roberta-base
32
+ model-index:
33
+ - name: xlm-roberta-base-language-detection
34
+ results: []
35
+ ---
36
+
37
+ # xlm-roberta-base-language-detection
38
+
39
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset.
40
+
41
+ ## Model description
42
+
43
+ This model is an XLM-RoBERTa transformer model with a classification head on top (i.e. a linear layer on top of the pooled output).
44
+ For additional information please refer to the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) model card or to the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al.
45
+
46
+ ## Intended uses & limitations
47
+
48
+ You can directly use this model as a language detector, i.e. for sequence classification tasks. Currently, it supports the following 20 languages:
49
+
50
+ `arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)`
51
+
52
+ ## Training and evaluation data
53
+
54
+ The model was fine-tuned on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset, which consists of text sequences in 20 languages. The training set contains 70k samples, while the validation and test sets 10k each. The average accuracy on the test set is **99.6%** (this matches the average macro/weighted F1-score being the test set perfectly balanced). A more detailed evaluation is provided by the following table.
55
+
56
+ | Language | Precision | Recall | F1-score | support |
57
+ |:--------:|:---------:|:------:|:--------:|:-------:|
58
+ |ar |0.998 |0.996 |0.997 |500 |
59
+ |bg |0.998 |0.964 |0.981 |500 |
60
+ |de |0.998 |0.996 |0.997 |500 |
61
+ |el |0.996 |1.000 |0.998 |500 |
62
+ |en |1.000 |1.000 |1.000 |500 |
63
+ |es |0.967 |1.000 |0.983 |500 |
64
+ |fr |1.000 |1.000 |1.000 |500 |
65
+ |hi |0.994 |0.992 |0.993 |500 |
66
+ |it |1.000 |0.992 |0.996 |500 |
67
+ |ja |0.996 |0.996 |0.996 |500 |
68
+ |nl |1.000 |1.000 |1.000 |500 |
69
+ |pl |1.000 |1.000 |1.000 |500 |
70
+ |pt |0.988 |1.000 |0.994 |500 |
71
+ |ru |1.000 |0.994 |0.997 |500 |
72
+ |sw |1.000 |1.000 |1.000 |500 |
73
+ |th |1.000 |0.998 |0.999 |500 |
74
+ |tr |0.994 |0.992 |0.993 |500 |
75
+ |ur |1.000 |1.000 |1.000 |500 |
76
+ |vi |0.992 |1.000 |0.996 |500 |
77
+ |zh |1.000 |1.000 |1.000 |500 |
78
+
79
+ ### Benchmarks
80
+
81
+ As a baseline to compare `xlm-roberta-base-language-detection` against, we have used the Python [langid](https://github.com/saffsd/langid.py) library. Since it comes pre-trained on 97 languages, we have used its `.set_languages()` method to constrain the language set to our 20 languages. The average accuracy of langid on the test set is **98.5%**. More details are provided by the table below.
82
+
83
+ | Language | Precision | Recall | F1-score | support |
84
+ |:--------:|:---------:|:------:|:--------:|:-------:|
85
+ |ar |0.990 |0.970 |0.980 |500 |
86
+ |bg |0.998 |0.964 |0.981 |500 |
87
+ |de |0.992 |0.944 |0.967 |500 |
88
+ |el |1.000 |0.998 |0.999 |500 |
89
+ |en |1.000 |1.000 |1.000 |500 |
90
+ |es |1.000 |0.968 |0.984 |500 |
91
+ |fr |0.996 |1.000 |0.998 |500 |
92
+ |hi |0.949 |0.976 |0.963 |500 |
93
+ |it |0.990 |0.980 |0.985 |500 |
94
+ |ja |0.927 |0.988 |0.956 |500 |
95
+ |nl |0.980 |1.000 |0.990 |500 |
96
+ |pl |0.986 |0.996 |0.991 |500 |
97
+ |pt |0.950 |0.996 |0.973 |500 |
98
+ |ru |0.996 |0.974 |0.985 |500 |
99
+ |sw |1.000 |1.000 |1.000 |500 |
100
+ |th |1.000 |0.996 |0.998 |500 |
101
+ |tr |0.990 |0.968 |0.979 |500 |
102
+ |ur |0.998 |0.996 |0.997 |500 |
103
+ |vi |0.971 |0.990 |0.980 |500 |
104
+ |zh |1.000 |1.000 |1.000 |500 |
105
+
106
+ ## How to get started with the model
107
+
108
+ The easiest way to use the model is via the high-level `pipeline` API:
109
+
110
+ ```python
111
+ from transformers import pipeline
112
+
113
+ text = [
114
+ "Brevity is the soul of wit.",
115
+ "Amor, ch'a nullo amato amar perdona."
116
+ ]
117
+
118
+ model_ckpt = "papluca/xlm-roberta-base-language-detection"
119
+ pipe = pipeline("text-classification", model=model_ckpt)
120
+ pipe(text, top_k=1, truncation=True)
121
+ ```
122
+
123
+ Or one can proceed with the tokenizer and model separately:
124
+
125
+ ```python
126
+ import torch
127
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
128
+
129
+ text = [
130
+ "Brevity is the soul of wit.",
131
+ "Amor, ch'a nullo amato amar perdona."
132
+ ]
133
+
134
+ model_ckpt = "papluca/xlm-roberta-base-language-detection"
135
+ tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
136
+ model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
137
+
138
+ inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
139
+
140
+ with torch.no_grad():
141
+ logits = model(**inputs).logits
142
+
143
+ preds = torch.softmax(logits, dim=-1)
144
+
145
+ # Map raw predictions to languages
146
+ id2lang = model.config.id2label
147
+ vals, idxs = torch.max(preds, dim=1)
148
+ {id2lang[k.item()]: v.item() for k, v in zip(idxs, vals)}
149
+ ```
150
+
151
+ ## Training procedure
152
+
153
+ Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/15LJTckS6gU3RQOmjLqxVNBmbsBdnUEvl?usp=sharing) with the training code.
154
+
155
+ ### Training hyperparameters
156
+
157
+ The following hyperparameters were used during training:
158
+ - learning_rate: 2e-05
159
+ - train_batch_size: 64
160
+ - eval_batch_size: 128
161
+ - seed: 42
162
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
163
+ - lr_scheduler_type: linear
164
+ - num_epochs: 2
165
+ - mixed_precision_training: Native AMP
166
+
167
+ ### Training results
168
+
169
+ The validation results on the `valid` split of the Language Identification dataset are summarised here below.
170
+
171
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
172
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
173
+ | 0.2492 | 1.0 | 1094 | 0.0149 | 0.9969 | 0.9969 |
174
+ | 0.0101 | 2.0 | 2188 | 0.0103 | 0.9977 | 0.9977 |
175
+
176
+ In short, it achieves the following results on the validation set:
177
+ - Loss: 0.0101
178
+ - Accuracy: 0.9977
179
+ - F1: 0.9977
180
+
181
+ ### Framework versions
182
+
183
+ - Transformers 4.12.5
184
+ - Pytorch 1.10.0+cu111
185
+ - Datasets 1.15.1
186
+ - Tokenizers 0.10.3
config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "papluca/xlm-roberta-base-language-detection",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "ja",
15
+ "1": "nl",
16
+ "2": "ar",
17
+ "3": "pl",
18
+ "4": "de",
19
+ "5": "it",
20
+ "6": "pt",
21
+ "7": "tr",
22
+ "8": "es",
23
+ "9": "hi",
24
+ "10": "el",
25
+ "11": "ur",
26
+ "12": "bg",
27
+ "13": "en",
28
+ "14": "fr",
29
+ "15": "zh",
30
+ "16": "ru",
31
+ "17": "th",
32
+ "18": "sw",
33
+ "19": "vi"
34
+ },
35
+ "initializer_range": 0.02,
36
+ "intermediate_size": 3072,
37
+ "label2id": {
38
+ "ar": 2,
39
+ "bg": 12,
40
+ "de": 4,
41
+ "el": 10,
42
+ "en": 13,
43
+ "es": 8,
44
+ "fr": 14,
45
+ "hi": 9,
46
+ "it": 5,
47
+ "ja": 0,
48
+ "nl": 1,
49
+ "pl": 3,
50
+ "pt": 6,
51
+ "ru": 16,
52
+ "sw": 18,
53
+ "th": 17,
54
+ "tr": 7,
55
+ "ur": 11,
56
+ "vi": 19,
57
+ "zh": 15
58
+ },
59
+ "layer_norm_eps": 1e-05,
60
+ "max_position_embeddings": 514,
61
+ "model_type": "xlm-roberta",
62
+ "num_attention_heads": 12,
63
+ "num_hidden_layers": 12,
64
+ "output_past": true,
65
+ "pad_token_id": 1,
66
+ "position_embedding_type": "absolute",
67
+ "problem_type": "single_label_classification",
68
+ "torch_dtype": "float32",
69
+ "transformers_version": "4.12.5",
70
+ "type_vocab_size": 1,
71
+ "use_cache": true,
72
+ "vocab_size": 250002
73
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a835d6e8ed50ef6b3c180db87446a83ee5ac437e981c932c8e1e239aacbe08b7
3
+ size 1112264584
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb6bded160fdd712245e1bd19c4de417e1508094a9f69d92ae287f32a8732888
3
+ size 1112318701
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6417044a1451c9a5fd302579ee5d39bae3831b0cd57bd008b61e79d33156f6e
3
+ size 1112525696
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "drive/MyDrive/Colab Notebooks/HuggingFace_course/HF_course_community_event/xlm-roberta-base-finetuned-language-detection", "tokenizer_class": "XLMRobertaTokenizer"}