|
--- |
|
license: apache-2.0 |
|
language: |
|
- it |
|
widget: |
|
- text: "una fantastica [MASK] di #calcio! grande prestazione del mister e della squadra" |
|
example_title: "Example 1" |
|
- text: "il governo [MASK] dovrebbe fare politica, non soltanto propaganda! #vergogna" |
|
example_title: "Example 2" |
|
- text: "che serata da sogno sul #redcarpet! grazie a tutti gli attori e registi del [MASK] italiano #oscar #awards" |
|
example_title: "Example 3" |
|
--- |
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
<body> |
|
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;">β</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">ββ</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">ββββModel: BERT-TWEET</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">ββββLang: IT</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">ββ</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;">β</span> |
|
</body> |
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
<h3>Model description</h3> |
|
|
|
This is a <b>BERT</b> <b>[1]</b> uncased model for the <b>Italian</b> language, obtained using <b>TwHIN-BERT</b> <b>[2]</b> ([twhin-bert-base](https://huggingface.co/Twitter/twhin-bert-base)) as a starting point and focusing it on the Italian language by modifying the embedding layer |
|
(as in <b>[3]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset) |
|
|
|
The resulting model has 110M parameters, a vocabulary of 30.520 tokens, and a size of ~440 MB. |
|
|
|
<h3>Quick usage</h3> |
|
|
|
```python |
|
from transformers import BertTokenizerFast, BertModel |
|
|
|
tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-tweet-base-italian-uncased") |
|
model = BertModel.from_pretrained("osiria/bert-tweet-base-italian-uncased") |
|
``` |
|
|
|
Here you can find the find the model already fine-tuned on Sentiment Analysis: https://huggingface.co/osiria/bert-tweet-italian-uncased-sentiment |
|
|
|
<h3>References</h3> |
|
|
|
[1] https://arxiv.org/abs/1810.04805 |
|
|
|
[2] https://arxiv.org/abs/2209.07562 |
|
|
|
[3] https://arxiv.org/abs/2010.05609 |
|
|
|
<h3>Limitations</h3> |
|
|
|
This model was trained on tweets, so it's mainly suitable for general-purpose social media text processing, involving short texts written in a social network style. |
|
It might show limitations when it comes to longer and more structured text, or domain-specific text. |
|
|
|
<h3>License</h3> |
|
|
|
The model is released under <b>Apache-2.0</b> license |
|
|
|
|