oshizo commited on
Commit
8b56287
·
1 Parent(s): d753083

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -45
README.md CHANGED
@@ -16,7 +16,7 @@ language:
16
 
17
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
 
19
- The base model is [studio-ousia/luke-japanese-base-lite](studio-ousia/luke-japanese-base-lite) and was trained one epoch with [JSNLI](https://huggingface.co/datasets/shunk031/jsnli).
20
 
21
  ## Usage (Sentence-Transformers)
22
 
@@ -84,47 +84,4 @@ The results of the evaluation by JSTS and JSICK are available [here](https://git
84
  ## Training
85
 
86
  Training scripts are available in [this repository](https://github.com/oshizo/JapaneseEmbeddingTrain).
87
- This model was trained 1 epoch on Google Colab Pro A100 and took approximately 35 minutes.
88
-
89
- The model was trained with the parameters:
90
-
91
- **DataLoader**:
92
-
93
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 2304 with parameters:
94
- ```
95
- {'batch_size': 128}
96
- ```
97
-
98
- **Loss**:
99
-
100
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
101
- ```
102
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
103
- ```
104
-
105
- Parameters of the fit()-Method:
106
- ```
107
- {
108
- "epochs": 1,
109
- "evaluation_steps": 230,
110
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
111
- "max_grad_norm": 1,
112
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
113
- "optimizer_params": {
114
- "lr": 2e-05
115
- },
116
- "scheduler": "WarmupLinear",
117
- "steps_per_epoch": null,
118
- "warmup_steps": 231,
119
- "weight_decay": 0.01
120
- }
121
- ```
122
-
123
-
124
- ## Full Model Architecture
125
- ```
126
- SentenceTransformer(
127
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: LukeModel
128
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
129
- )
130
- ```
 
16
 
17
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
 
19
+ The base model is [studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite) and was trained 1 epoch with [shunk031/jsnli](https://huggingface.co/datasets/shunk031/jsnli).
20
 
21
  ## Usage (Sentence-Transformers)
22
 
 
84
  ## Training
85
 
86
  Training scripts are available in [this repository](https://github.com/oshizo/JapaneseEmbeddingTrain).
87
+ This model was trained 1 epoch on Google Colab Pro A100 and took approximately 40 minutes.