oshizo commited on
Commit
d753083
1 Parent(s): 82f42de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -5,14 +5,18 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -28,7 +32,7 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -54,8 +58,8 @@ def mean_pooling(model_output, attention_mask):
54
  sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -75,12 +79,13 @@ print(sentence_embeddings)
75
 
76
  ## Evaluation Results
77
 
78
- <!--- Describe how your model was evaluated -->
79
 
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
 
 
82
 
83
- ## Training
84
  The model was trained with the parameters:
85
 
86
  **DataLoader**:
@@ -122,8 +127,4 @@ SentenceTransformer(
122
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: LukeModel
123
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
  )
125
- ```
126
-
127
- ## Citing & Authors
128
-
129
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: apache-2.0
9
+ datasets:
10
+ - shunk031/jsnli
11
+ language:
12
+ - ja
13
  ---
14
 
15
+ # sbert-jsnli-luke-japanese-base-lite
16
 
17
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
 
19
+ The base model is [studio-ousia/luke-japanese-base-lite](studio-ousia/luke-japanese-base-lite) and was trained one epoch with [JSNLI](https://huggingface.co/datasets/shunk031/jsnli).
20
 
21
  ## Usage (Sentence-Transformers)
22
 
 
32
  from sentence_transformers import SentenceTransformer
33
  sentences = ["This is an example sentence", "Each sentence is converted"]
34
 
35
+ model = SentenceTransformer('oshizo/sbert-jsnli-luke-japanese-base-lite')
36
  embeddings = model.encode(sentences)
37
  print(embeddings)
38
  ```
 
58
  sentences = ['This is an example sentence', 'Each sentence is converted']
59
 
60
  # Load model from HuggingFace Hub
61
+ tokenizer = AutoTokenizer.from_pretrained('oshizo/sbert-jsnli-luke-japanese-base-lite')
62
+ model = AutoModel.from_pretrained('oshizo/sbert-jsnli-luke-japanese-base-lite')
63
 
64
  # Tokenize sentences
65
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
79
 
80
  ## Evaluation Results
81
 
82
+ The results of the evaluation by JSTS and JSICK are available [here](https://github.com/oshizo/JapaneseEmbeddingEval).
83
 
84
+ ## Training
85
 
86
+ Training scripts are available in [this repository](https://github.com/oshizo/JapaneseEmbeddingTrain).
87
+ This model was trained 1 epoch on Google Colab Pro A100 and took approximately 35 minutes.
88
 
 
89
  The model was trained with the parameters:
90
 
91
  **DataLoader**:
 
127
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: LukeModel
128
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
129
  )
130
+ ```