oscarwu's picture
update model card README.md
1684e0b
|
raw
history blame
5.12 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: mlcovid19-classifier
    results: []

mlcovid19-classifier

This model is a fine-tuned version of oscarwu/mlcovid19-classifier on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4565
  • F1 Macro: 0.6596
  • F1 Misinformation: 0.8776
  • F1 Factual: 0.8823
  • F1 Other: 0.2188
  • Prec Macro: 0.7181
  • Prec Misinformation: 0.834
  • Prec Factual: 0.8952
  • Prec Other: 0.4251

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2165
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Misinformation F1 Factual F1 Other Prec Macro Prec Misinformation Prec Factual Prec Other
1.1986 0.94 16 1.0988 0.6120 0.8270 0.7623 0.2466 0.6567 0.7636 0.8578 0.3487
1.1885 1.94 32 1.0851 0.6163 0.8271 0.7645 0.2574 0.6588 0.7660 0.8557 0.3547
1.1538 2.94 48 1.0625 0.6198 0.8275 0.7683 0.2635 0.6593 0.7695 0.8521 0.3565
1.1386 3.94 64 1.0307 0.6235 0.8259 0.7722 0.2725 0.6564 0.7738 0.8452 0.3502
1.0935 4.94 80 0.9911 0.6276 0.8259 0.7797 0.2771 0.6549 0.7803 0.8392 0.3452
1.055 5.94 96 0.9445 0.6304 0.8271 0.7912 0.2730 0.6521 0.7893 0.8344 0.3327
0.9925 6.94 112 0.8945 0.6340 0.8270 0.8001 0.2749 0.6518 0.7976 0.8251 0.3327
0.9446 7.94 128 0.8448 0.6390 0.8303 0.8106 0.2760 0.6545 0.8088 0.8186 0.3360
0.8813 8.94 144 0.7970 0.6448 0.8355 0.8238 0.2752 0.6598 0.8185 0.8214 0.3395
0.8259 9.94 160 0.7475 0.6480 0.8405 0.8330 0.2704 0.6644 0.8243 0.8256 0.3434
0.7721 10.94 176 0.6971 0.6532 0.8483 0.8430 0.2684 0.6746 0.8281 0.8375 0.3583
0.7107 11.94 192 0.6542 0.6510 0.8527 0.8496 0.2507 0.6765 0.8290 0.8448 0.3557
0.6742 12.94 208 0.6126 0.6527 0.8554 0.8544 0.2484 0.6793 0.8298 0.8521 0.3560
0.6296 13.94 224 0.5735 0.6560 0.8603 0.8586 0.2491 0.6902 0.8298 0.8602 0.3804
0.5947 14.94 240 0.5416 0.6592 0.8641 0.8624 0.2512 0.6986 0.8299 0.8689 0.3970
0.5728 15.94 256 0.5164 0.6584 0.8678 0.8674 0.2402 0.7028 0.8312 0.8745 0.4026
0.5424 16.94 272 0.4950 0.6620 0.8711 0.8720 0.2428 0.7110 0.8315 0.8836 0.4178
0.5277 17.94 288 0.4798 0.6594 0.8727 0.8751 0.2305 0.7107 0.8316 0.8874 0.4130
0.5204 18.94 304 0.4679 0.6613 0.8749 0.8767 0.2323 0.7183 0.8335 0.8868 0.4346
0.5061 19.94 320 0.4565 0.6596 0.8776 0.8823 0.2188 0.7181 0.834 0.8952 0.4251

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1