osanseviero
commited on
Commit
•
204d5f4
1
Parent(s):
82598df
Add pipeline
Browse files- .gitattributes +1 -0
- README.md +26 -0
- config.json +6 -0
- pipeline.py +39 -0
.gitattributes
CHANGED
@@ -14,4 +14,5 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
17 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
18 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
library_name: generic
|
5 |
+
---
|
6 |
+
|
7 |
+
# Dog vs Cat Image Classification with FastAI CNN
|
8 |
+
|
9 |
+
Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training
|
10 |
+
|
11 |
+
|
12 |
+
## Training
|
13 |
+
|
14 |
+
The model was trained as follows
|
15 |
+
|
16 |
+
```python
|
17 |
+
path = untar_data(URLs.PETS)/'images'
|
18 |
+
|
19 |
+
def is_cat(x): return x[0].isupper()
|
20 |
+
dls = ImageDataLoaders.from_name_func(
|
21 |
+
path, get_image_files(path), valid_pct=0.2, seed=42,
|
22 |
+
label_func=is_cat, item_tfms=Resize(224))
|
23 |
+
|
24 |
+
learn = cnn_learner(dls, resnet34, metrics=error_rate)
|
25 |
+
learn.fine_tune(1)
|
26 |
+
```
|
config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id2label": {
|
3 |
+
"0": "dog",
|
4 |
+
"1": "cat"
|
5 |
+
}
|
6 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
import os
|
5 |
+
from fastai.learner import load_learner
|
6 |
+
|
7 |
+
# Custom code used by the model.
|
8 |
+
def is_cat(x):
|
9 |
+
return x[0].isupper()
|
10 |
+
|
11 |
+
class PreTrainedPipeline():
|
12 |
+
def __init__(self, path=""):
|
13 |
+
# IMPLEMENT_THIS
|
14 |
+
# Preload all the elements you are going to need at inference.
|
15 |
+
# For instance your model, processors, tokenizer that might be needed.
|
16 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
17 |
+
self.model = load_learner(os.path.join(path, "model.pkl"))
|
18 |
+
with open(os.path.join(path, "config.json")) as config:
|
19 |
+
config = json.load(config)
|
20 |
+
self.id2label = config["id2label"]
|
21 |
+
|
22 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
23 |
+
"""
|
24 |
+
Args:
|
25 |
+
inputs (:obj:`PIL.Image`):
|
26 |
+
The raw image representation as PIL.
|
27 |
+
No transformation made whatsoever from the input. Make all necessary transformations here.
|
28 |
+
Return:
|
29 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
30 |
+
It is preferred if the returned list is in decreasing `score` order
|
31 |
+
"""
|
32 |
+
# IMPLEMENT_THIS
|
33 |
+
# FastAI expects a np array, not a PIL Image.
|
34 |
+
_, _, preds = self.model.predict(np.array(inputs))
|
35 |
+
labels = [
|
36 |
+
{"label": str(self.id2label["0"]), "score": preds[0]},
|
37 |
+
{"label": str(self.id2label["1"]), "score": preds[1]},
|
38 |
+
]
|
39 |
+
return labels
|