|
from typing import Dict, List, Any |
|
from PIL import Image |
|
|
|
import os |
|
import json |
|
import numpy as np |
|
from fastai.learner import load_learner |
|
|
|
from helpers import is_cat |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
|
|
|
|
|
|
|
|
self.model = load_learner(os.path.join(path, "model.pkl")) |
|
with open(os.path.join(path, "config.json")) as config: |
|
config = json.load(config) |
|
self.id2label = config["id2label"] |
|
|
|
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
inputs (:obj:`PIL.Image`): |
|
The raw image representation as PIL. |
|
No transformation made whatsoever from the input. Make all necessary transformations here. |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
It is preferred if the returned list is in decreasing `score` order |
|
""" |
|
|
|
|
|
_, _, preds = self.model.predict(np.array(inputs)) |
|
preds = preds.tolist() |
|
labels = [ |
|
{"label": str(self.id2label["0"]), "score": preds[0]}, |
|
{"label": str(self.id2label["1"]), "score": preds[1]}, |
|
] |
|
return labels |