1
---
2
tags:
3
- spacy
4
- token-classification
5
language:
6
- en
7
model-index:
8
- name: fashion_brands_patterns
9
  results:
10
  - task:
11
      name: NER
12
      type: token-classification
13
    metrics:
14
    - name: NER Precision
15
      type: precision
16
      value: 0.0
17
    - name: NER Recall
18
      type: recall
19
      value: 0.0
20
    - name: NER F Score
21
      type: f_score
22
      value: 0.0
23
---
24
| Feature | Description |
25
| --- | --- |
26
| **Name** | `en_ner_fashion` |
27
| **Version** | `0.0.0` |
28
| **spaCy** | `>=3.1.0,<3.2.0` |
29
| **Default Pipeline** | `tok2vec`, `ner` |
30
| **Components** | `tok2vec`, `ner` |
31
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
32
| **Sources** | n/a |
33
| **License** | n/a |
34
| **Author** | [n/a]() |
35
36
### Label Scheme
37
38
<details>
39
40
<summary>View label scheme (1 labels for 1 components)</summary>
41
42
| Component | Labels |
43
| --- | --- |
44
| **`ner`** | `FASHION_BRAND` |
45
46
</details>
47
48
### Accuracy
49
50
| Type | Score |
51
| --- | --- |
52
| `ENTS_F` | 0.00 |
53
| `ENTS_P` | 0.00 |
54
| `ENTS_R` | 0.00 |
55
| `TOK2VEC_LOSS` | 1043.55 |
56
| `NER_LOSS` | 1414323.43 |
57