preemware commited on
Commit
d75a41a
1 Parent(s): 63f11ba

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - code
7
+ - cybersecurity
8
+ - penetration testing
9
+ - hacking
10
+ - code
11
+ - uncensored
12
+ ---
13
+ # Prox-Llama-3-8B
14
+
15
+ By [OpenVoid](https://openvoid.ai)
16
+
17
+ <img src="https://cdn.openvoid.ai/images/prox-llama3.png" width="500" />
18
+
19
+ ## Model Description
20
+
21
+ Prox-Llama-3-8B is a uncensored fine-tune of Meta-Llama-3-8B-Instruct, tailored for specialized applications in code generation and cybersecurity.
22
+
23
+ ## Intended Uses & Limitations
24
+
25
+ Designed for tasks related to hacking and coding:
26
+
27
+ - Code generation
28
+ - Code explanation and documentation
29
+ - Answering questions on hacking techniques and cybersecurity
30
+ - Providing coding project insights
31
+
32
+ Review and verify outputs carefully, especially for critical applications. Expert validation is recommended to avoid biased or inconsistent content. Use responsibly and ethically, complying with applicable laws and regulations to prevent misuse for malicious purposes.
33
+
34
+ ## Training Data
35
+
36
+ The model was fine-tuned on a proprietary dataset from OpenVoid, featuring high-quality text data related to coding, cybersecurity, and hacking. Extensive filtering and preprocessing ensured data quality and relevance.
37
+
38
+ ## Evaluation
39
+
40
+ - **HumanEval v1.0**: pass@1: 0.561
41
+ - **EvalPlus v1.1**: pass@1: 0.500
42
+ - **AGIEval**: 40.74
43
+ - **GPT4All+**: 70.17
44
+ - **TruthfulQA+**: 51.15
45
+ - **Bigbench+**: 44.12
46
+ - **Average**: 51.55
47
+
48
+ ## How to Use the Model
49
+
50
+ ### Using Transformers
51
+
52
+ Example of using Prox-Llama-3-8B with the Transformers library:
53
+
54
+ ```python
55
+ import transformers
56
+ import torch
57
+
58
+ model_id = "openvoid/Prox-Llama-3-8B"
59
+
60
+ pipeline = transformers.pipeline(
61
+ "text-generation",
62
+ model=model_id,
63
+ model_kwargs={"torch_dtype": torch.bfloat16},
64
+ device_map="auto",
65
+ )
66
+
67
+ messages = [
68
+ {"role": "system", "content": "You are Prox."},
69
+ {"role": "user", "content": "Who are you?"},
70
+ ]
71
+
72
+ terminators = [
73
+ pipeline.tokenizer.eos_token_id,
74
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
75
+ ]
76
+
77
+ outputs = pipeline(
78
+ messages,
79
+ max_new_tokens=256,
80
+ eos_token_id=terminators,
81
+ do_sample=True,
82
+ temperature=0.6,
83
+ top_p=0.9,
84
+ )
85
+ print(outputs[0]["generated_text"][-1])
86
+ ```