preemware commited on
Commit
84ae079
1 Parent(s): 658f973

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - code
7
+ - cybersecurity
8
+ - penetration testing
9
+ - hacking
10
+ - code
11
+ - uncensored
12
+ datasets:
13
+ - mlabonne/orpo-dpo-mix-40k
14
+ ---
15
+ # Prox-Llama-3-8B-abliterated-orpo
16
+
17
+ By [OpenVoid](https://openvoid.ai)
18
+
19
+ <img src="https://cdn.openvoid.ai/images/prox-llama3.png" width="400" />
20
+
21
+ ## Model Description
22
+
23
+ Prox-Llama-3-8B is a uncensored fine-tune of Meta-Llama-3-8B-Instruct, tailored for specialized applications in code generation and cybersecurity.
24
+
25
+ ## Intended Uses & Limitations
26
+
27
+ Designed for tasks related to hacking and coding:
28
+
29
+ - Code generation
30
+ - Code explanation and documentation
31
+ - Answering questions on hacking techniques and cybersecurity
32
+ - Providing coding project insights
33
+
34
+ Review and verify outputs carefully, especially for critical applications. Expert validation is recommended to avoid biased or inconsistent content. Use responsibly and ethically, complying with applicable laws and regulations to prevent misuse for malicious purposes.
35
+
36
+ ## Training Data
37
+
38
+ The model was fine-tuned on a proprietary dataset from OpenVoid, featuring high-quality text data related to coding, cybersecurity, and hacking. Extensive filtering and preprocessing ensured data quality and relevance.
39
+
40
+ ## Evaluation
41
+
42
+ - **HumanEval v1.0**: pass@1: 0.537
43
+ - **EvalPlus v1.1**: pass@1: 0.482
44
+
45
+ ## How to Use the Model
46
+
47
+ ### Using Transformers
48
+
49
+ Example of using Prox-Llama-3-8B with the Transformers library:
50
+
51
+ ```python
52
+ import transformers
53
+ import torch
54
+
55
+ model_id = "openvoid/Prox-Llama-3-8B-abliterated-orpo"
56
+
57
+ pipeline = transformers.pipeline(
58
+ "text-generation",
59
+ model=model_id,
60
+ model_kwargs={"torch_dtype": torch.bfloat16},
61
+ device_map="auto",
62
+ )
63
+
64
+ messages = [
65
+ {"role": "system", "content": "You are Prox."},
66
+ {"role": "user", "content": "Who are you?"},
67
+ ]
68
+
69
+ terminators = [
70
+ pipeline.tokenizer.eos_token_id,
71
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
72
+ ]
73
+
74
+ outputs = pipeline(
75
+ messages,
76
+ max_new_tokens=256,
77
+ eos_token_id=terminators,
78
+ do_sample=True,
79
+ temperature=0.6,
80
+ top_p=0.9,
81
+ )
82
+ print(outputs[0]["generated_text"][-1])
83
+ ```