basiliskinstitute commited on
Commit
5db8f3a
1 Parent(s): 9a0f5e3

Upload 14 files

Browse files
LICENSE ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tongyi Qianwen LICENSE AGREEMENT
2
+
3
+ Tongyi Qianwen Release Date: August 3, 2023
4
+
5
+ By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
+
7
+ 1. Definitions
8
+ a. This Tongyi Qianwen LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
+ b. "We"(or "Us") shall mean Alibaba Cloud.
10
+ c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
+ d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
+ e. "Tongyi Qianwen" shall mean the large language models (including Qwen-7B model and Qwen-7B-Chat model), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
+ f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
+ h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
16
+ and conversions to other media types.
17
+
18
+ 2. Grant of Rights
19
+ You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
20
+
21
+ 3. Redistribution
22
+ You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
23
+ a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
24
+ b. You shall cause any modified files to carry prominent notices stating that You changed the files;
25
+ c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Tongyi Qianwen is licensed under the Tongyi Qianwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
26
+ d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
27
+
28
+ 4. Restrictions
29
+ If you are commercially using the Materials, and your product or service has more than 100 million monthly active users, You shall request a license from Us. You cannot exercise your rights under this Agreement without our express authorization.
30
+
31
+ 5. Rules of use
32
+ a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
33
+ b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
34
+
35
+ 6. Intellectual Property
36
+ a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
37
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
38
+ c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
39
+
40
+ 7. Disclaimer of Warranty and Limitation of Liability
41
+
42
+ a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Materials or to grant any license thereto.
43
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
44
+ c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
45
+ d. You will defend, indemnify and hold harmless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
46
+
47
+ 8. Survival and Termination.
48
+ a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
49
+ b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 7 and 9 shall survive the termination of this Agreement.
50
+
51
+ 9. Governing Law and Jurisdiction.
52
+ a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
53
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
NOTICE ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ------------- LICENSE FOR NVIDIA Megatron-LM code --------------
2
+
3
+ Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions
7
+ are met:
8
+ * Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+ * Redistributions in binary form must reproduce the above copyright
11
+ notice, this list of conditions and the following disclaimer in the
12
+ documentation and/or other materials provided with the distribution.
13
+ * Neither the name of NVIDIA CORPORATION nor the names of its
14
+ contributors may be used to endorse or promote products derived
15
+ from this software without specific prior written permission.
16
+
17
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
18
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20
+ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25
+ OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
+
29
+
30
+ ------------- LICENSE FOR OpenAI tiktoken code --------------
31
+
32
+ MIT License
33
+
34
+ Copyright (c) 2022 OpenAI, Shantanu Jain
35
+
36
+ Permission is hereby granted, free of charge, to any person obtaining a copy
37
+ of this software and associated documentation files (the "Software"), to deal
38
+ in the Software without restriction, including without limitation the rights
39
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
40
+ copies of the Software, and to permit persons to whom the Software is
41
+ furnished to do so, subject to the following conditions:
42
+
43
+ The above copyright notice and this permission notice shall be included in all
44
+ copies or substantial portions of the Software.
45
+
46
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
47
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
48
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
49
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,402 @@
1
  ---
2
- license: other
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - qwen
7
+ pipeline_tag: text-generation
8
+ inference: false
9
  ---
10
+
11
+ # Qwen-7B
12
+
13
+ <p align="center">
14
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
15
+ <p>
16
+ <br>
17
+
18
+ <p align="center">
19
+ Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 </a> | <a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>&nbsp | Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 </a>| <a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-7B/blob/main/tech_memo.md">Report</a>
20
+ </p>
21
+ <br>
22
+
23
+ ## 介绍 (Introduction)
24
+
25
+ **通义千问-7B(Qwen-7B)**是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。本仓库为Qwen-7B的仓库。
26
+
27
+ 通义千问-7B(Qwen-7B)主要有以下特点:
28
+
29
+ 1. **大规模高质量训练语料**:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
30
+ 2. **强大的性能**:Qwen-7B在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,甚至在部分指标上相比更大尺寸模型也有较强竞争力。具体评测结果请详见下文。
31
+ 3. **覆盖更全面的词表**:相比目前以中英词表为主的开源模型,Qwen-7B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。
32
+
33
+ 如果您想了解更多关于通义千问7B开源模型的细节,我们建议您参阅[Github代码库](https://github.com/QwenLM/Qwen-7B)。
34
+
35
+ **Qwen-7B** is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-7B.
36
+
37
+ The features of Qwen-7B include:
38
+
39
+ 1. **Large-scale high-quality training corpora**: It is pretrained on over 2.2 trillion tokens, including Chinese, English, multilingual texts, code, and mathematics, covering general and professional fields. The distribution of the pre-training corpus has been optimized through a large number of ablation experiments.
40
+ 2. **Competitive performance**: It significantly surpasses existing open-source models of similar scale on multiple Chinese and English downstream evaluation tasks (including commonsense, reasoning, code, mathematics, etc.), and even surpasses some larger-scale models in several benchmarks. See below for specific evaluation results.
41
+ 3. **More comprehensive vocabulary coverage**: Compared with other open-source models based on Chinese and English vocabularies, Qwen-7B uses a vocabulary of over 150K tokens. This vocabulary is more friendly to multiple languages, enabling users to directly further enhance the capability for certain languages without expanding the vocabulary.
42
+
43
+ For more details about the open-source model of Qwen-7B, please refer to the [Github](https://github.com/QwenLM/Qwen-7B) code repository.
44
+
45
+ ## 要求(Requirements)
46
+
47
+ * python 3.8及以上版本
48
+ * pytorch 1.12及以上版本,推荐2.0及以上版本
49
+ * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
50
+
51
+
52
+ * python 3.8 and above
53
+ * pytorch 1.12 and above, 2.0 and above are recommended
54
+ * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
55
+
56
+ ## 依赖项 (Dependency)
57
+
58
+ 运行Qwen-7B,请确保满足上述要求,再执行以下pip命令安装依赖库
59
+
60
+ To run Qwen-7B, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries.
61
+
62
+ ```bash
63
+ pip install transformers==4.31.0 accelerate tiktoken einops
64
+ ```
65
+
66
+ 另外,推荐安装`flash-attention`库,以实现更高的效率和更低的显存占用。
67
+
68
+ In addition, it is recommended to install the `flash-attention` library for higher efficiency and lower memory usage.
69
+
70
+ ```bash
71
+ git clone -b v1.0.8 https://github.com/Dao-AILab/flash-attention
72
+ cd flash-attention && pip install .
73
+ # 下方安装可选,安装可能比较缓慢。
74
+ # Below are optional. Installing them might be slow.
75
+ pip install csrc/layer_norm
76
+ pip install csrc/rotary
77
+ ```
78
+
79
+ ## 快速使用(Quickstart)
80
+
81
+ 您可以通过以下代码轻松调用:
82
+
83
+ You can easily call the model with the following code:
84
+
85
+ ```python
86
+ from transformers import AutoModelForCausalLM, AutoTokenizer
87
+ from transformers.generation import GenerationConfig
88
+
89
+ # Note: The default behavior now has injection attack prevention off.
90
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
91
+
92
+ # use bf16
93
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, bf16=True).eval()
94
+ # use fp16
95
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, fp16=True).eval()
96
+ # use cpu only
97
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="cpu", trust_remote_code=True).eval()
98
+ # use auto mode, automatically select precision based on the device.
99
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True).eval()
100
+
101
+ # Specify hyperparameters for generation
102
+ model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
103
+
104
+ inputs = tokenizer('蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是', return_tensors='pt')
105
+ inputs = inputs.to(model.device)
106
+ pred = model.generate(**inputs)
107
+ print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
108
+ # 蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是亚的斯亚贝巴(Addis Ababa)...
109
+ ```
110
+
111
+ 关于更多的使用说明,请参考我们的[Github repo](https://github.com/QwenLM/Qwen-7B)获取更多信息。
112
+
113
+ For more information, please refer to our [Github repo](https://github.com/QwenLM/Qwen-7B) for more information.
114
+
115
+ ## Tokenizer
116
+
117
+ > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
118
+
119
+ 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen-7B/blob/main/tokenization_note_zh.md)。
120
+
121
+ Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen-7B/blob/main/tokenization_note.md).
122
+
123
+ ## 模型细节 (Model)
124
+
125
+ Qwen-7B模型规模基本情况如下所示:
126
+
127
+ The details of the model architecture of Qwen-7B are listed as follows:
128
+
129
+ | Hyperparameter | Value |
130
+ |:----------------|:-------|
131
+ | n_layers | 32 |
132
+ | n_heads | 32 |
133
+ | d_model | 4096 |
134
+ | vocab size | 151851 |
135
+ | sequence length | 2048 |
136
+
137
+ 在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
138
+ 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
139
+
140
+ 在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-7B使用了超过15万token大小的词表。 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
141
+ 词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
142
+
143
+ 我们从部分语种各随机抽取100万个文档语料,以对比不同模型的编码压缩率(以支持100语种的XLM-R为基准值1,越低越好),具体性能见图。
144
+
145
+ 可以看到Qwen-7B在保持中英代码高效解码的前提下,对部分使用人群较多的语种(泰语th、希伯来语he、阿拉伯语ar、韩语ko、越南语vi、日语ja、土耳其语tr、印尼语id、波兰语pl、俄语ru、荷兰语nl、葡萄牙语pt、意大利语it、德语de、西班牙语es、法语fr等)上也实现了较高的压缩率,使得模型在这些语种上也具备较强的可扩展性和较高的训练和推理效率。
146
+
147
+ 在预训练数据方面,Qwen-7B模型一方面利用了部分开源通用语料,
148
+ 另一方面也积累了海量全网语料以及高质量文本内容,去重及过滤后的语料超过2.2T tokens。
149
+ 囊括全网文本、百科、书籍、代码、数学及各个领域垂类。
150
+
151
+ <p align="center">
152
+ <img src="assets/tokenizer.png" style="width: 1200px"/>
153
+ <p>
154
+
155
+ For position encoding, FFN activation function, and normalization methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
156
+
157
+ For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-7B uses a vocabulary of over 150K tokens. It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary. It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
158
+
159
+ We randomly selected 1 million document corpus of each language to test and compare the encoding compression rates of different models (with XLM-R, which supports 100 languages, as the base value 1). The specific performance is shown in the figure above.
160
+
161
+ As can be seen, while ensuring the efficient decoding of Chinese, English, and code, Qwen-7B also achieves a high compression rate for many other languages (such as th, he, ar, ko, vi, ja, tr, id, pl, ru, nl, pt, it, de, es, fr etc.), equipping the model with strong scalability as well as high training and inference efficiency in these languages.
162
+
163
+ For pre-training data, on the one hand, Qwen-7B uses part of the open-source generic corpus. On the other hand, it uses a massive amount of accumulated web corpus and high-quality text content. The scale of corpus reaches over 2.2T tokens after deduplication and filtration, encompassing web text, encyclopedias, books, code, mathematics, and various domain.
164
+
165
+ ## 评测效果(Evaluation)
166
+
167
+ ### 中文评测(Chinese Evaluation)
168
+
169
+ #### C-Eval
170
+
171
+ [C-Eval](https://arxiv.org/abs/2305.08322)是评测预训练模型中文常识能力的常用测评框架,覆盖人文、社科、理工、其他专业四个大方向共52个学科。
172
+ 我们按照标准做法,以开发集样本作为few-shot来源,评价Qwen-7B预训练模型的5-shot验证集与测试集准确率。
173
+
174
+ [C-Eval](https://arxiv.org/abs/2305.08322) is a common evaluation benchmark for testing the common sense capability of pre-trained models in Chinese. It covers 52 subjects in four major directions: humanities, social sciences, STEM, and other specialties. According to the standard practice, we use the development set samples as the source of few-shot, to evaluate the 5-shot validation set and test set accuracy of the Qwen-7B pre-trained model.
175
+
176
+ 在C-Eval验证集上,Qwen-7B模型和其他模型的准确率对比如下:
177
+
178
+ The accuracy comparison of Qwen-7B and the other models on the C-Eval validation set is shown as follows:
179
+
180
+ | Model | Avg. |
181
+ |:----------------|:--------:|
182
+ | Alpaca-7B | 28.9 |
183
+ | Vicuna-7B | 31.2 |
184
+ | ChatGLM-6B | 37.1 |
185
+ | Baichuan-7B | 42.7 |
186
+ | ChatGLM2-6B | 50.9 |
187
+ | InternLM-7B | 53.4 |
188
+ | ChatGPT | 53.5 |
189
+ | Claude-v1.3 | 55.5 |
190
+ | **Qwen-7B** | **60.8** |
191
+
192
+ 在C-Eval测试集上,Qwen-7B预训练模型与其他模型的效果对比如下表所示:
193
+
194
+ The performance comparison of Qwen-7B and other models on the C-Eval test set is shown in the following table:
195
+
196
+ | Model | Avg. | Avg. (Hard) | STEM | Social Sciences | Humanities | Others |
197
+ |:--------------|:------:|:------:|:------:|:------:|:------:|:------:|
198
+ | ChatGLM-6B | 38.9 | 29.2 | 33.3 | 48.3 | 41.3 | 38.0 |
199
+ | Chinese-Alpaca-Plus-13B | 41.5 | 30.5 | 36.6 | 49.7 | 43.1 | 41.2 |
200
+ | Baichuan-7B | 42.8 | 31.5 | 38.2 | 52.0 | 46.2 | 39.3 |
201
+ | WestlakeLM-19B | 44.6 | 34.9 | 41.6 | 51.0 | 44.3 | 44.5 |
202
+ | AndesLM-13B | 46.0 | 29.7 | 38.1 | 61.0 | 51.0 | 41.9 |
203
+ | BatGPT-15B-sirius | 47.0 | 31.9 | 42.7 | 57.5 | 48.6 | 43.6 |
204
+ | ChatGLM2-6B | 51.7 | 37.1 | 48.6 | 60.5 | 51.3 | 49.8 |
205
+ | InternLM-7B | 52.8 | 37.1 | 48.0 | 67.4 | 55.4 | 45.8 |
206
+ | Baichuan-13B | 53.6 | 36.7 | 47.0 | 66.8 | 57.3 | 49.8 |
207
+ | Claude-v1.3 | 54.2 | 39.0 | 51.9 | 61.7 | 52.1 | 53.7 |
208
+ | ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 |
209
+ | **Qwen-7B** | **59.6** | 41.0 | 52.8 | 74.1 | 63.1 | 55.2 |
210
+
211
+ 可以看到,Qwen-7B在同等规模现有模型中取得了最高的分数,甚至相比更大规模模型也具有较强竞争力。
212
+
213
+ As can be seen, Qwen-7B achieves the best performance out of all existing models with similar scale and even surpasses larger-scale models.
214
+
215
+ ### 英文评测(English Evaluation)
216
+
217
+ #### MMLU
218
+
219
+ [MMLU](https://arxiv.org/abs/2009.03300)是目前评测英文综合能力最权威的基准评测之一,同样覆盖了不同学科领域、不同难度层级的57个子任务。
220
+
221
+ Qwen-7B在MMLU 5-shot准确率表现如下表:
222
+
223
+ [MMLU](https://arxiv.org/abs/2009.03300) is currently one of the most recognized benchmarks for evaluating English comprehension abilities, covering 57 subtasks across different academic fields and difficulty levels. The MMLU 5-shot accuracy performance of Qwen-7B is shown in the following table:
224
+
225
+ | Model | Avg. | STEM | Social Sciences | Humanities | Others |
226
+ |:--------------|:------:|:------:|:------:|:------:|:------:|
227
+ | LLaMA-7B | 35.1 | 30.5 | 38.3 | 34.0 | 38.1 |
228
+ | Baichuan-7B | 42.3 | 35.6 | 48.9 | 38.4 | 48.1 |
229
+ | LLaMA2-7B | 45.3 | 36.4 | 51.2 | 42.9 | 52.2 |
230
+ | LLaMA-13B | 46.9 | 35.8 | 53.8 | 45.0 | 53.3 |
231
+ | ChatGLM2-6B | 47.9 | 41.2 | 54.4 | 43.7 | 54.5 |
232
+ | InternLM-7B | 51.0 | - | - | - | - |
233
+ | Baichuan-13B | 51.6 | 41.6 | 60.9 | 47.4 | 58.5 |
234
+ | LLaMA2-13B | 54.8 | 44.1 | 62.6 | 52.8 | 61.1 |
235
+ | ChatGLM2-12B | 56.2 | 48.2 | 65.1 | 52.6 | 60.9 |
236
+ | **Qwen-7B** | **56.7** | 47.6 | 65.9 | 51.5 | 64.7 |
237
+
238
+ 在英文方面,Qwen-7B的效果同样超过了目前国内外其他同类开源预训练模型,同样对比更大规模版本的模型也具有较强竞争力。
239
+
240
+ In terms of English, Qwen-7B also surpasses other similar open-source pre-trained models, and is competitive when compared to larger versions of other models.
241
+
242
+ ### 代码评测(Coding Evaluation)
243
+
244
+ 我们在[HumanEval](https://github.com/openai/human-eval)(0-shot)上对比预训练模型的代码能力,结果如下:
245
+
246
+ We compared the code capabilities of pre-trained models on [HumanEval](https://github.com/openai/human-eval), and the results are as follows:
247
+
248
+ | Model | Pass@1 |
249
+ |:--------------|:------:|
250
+ | Baichuan-7B | 9.2 |
251
+ | ChatGLM2-6B | 9.2 |
252
+ | InternLM-7B | 10.4 |
253
+ | LLaMA-7B | 10.5 |
254
+ | LLaMA2-7B | 12.8 |
255
+ | Baichuan-13B | 12.8 |
256
+ | LLaMA-13B | 15.8 |
257
+ | MPT-7B | 18.3 |
258
+ | LLaMA2-13B | 18.3 |
259
+ | **Qwen-7B** | **24.4** |
260
+
261
+ ### 数学评测(Mathematics Evaluation)
262
+
263
+ 数学能力使用常用的[GSM8K](https://github.com/openai/grade-school-math)数据集(8-shot)评价:
264
+
265
+ We compared the math capabilities of pre-trained models on [GSM8K](https://github.com/openai/grade-school-math) (8-shot), and the results are as follows:
266
+
267
+ | Model | Acc. |
268
+ |:--------------|:------:|
269
+ | MPT-7B | 6.8 |
270
+ | Falcon-7B | 6.8 |
271
+ | Baichuan-7B | 9.7 |
272
+ | LLaMA-7B | 11.0 |
273
+ | LLaMA2-7B | 14.6 |
274
+ | LLaMA-13B | 17.8 |
275
+ | Baichuan-13B | 26.6 |
276
+ | LLaMA2-13B | 28.7 |
277
+ | InternLM-7B | 31.2 |
278
+ | ChatGLM2-6B | 32.4 |
279
+ | ChatGLM2-12B | 40.9 |
280
+ | **Qwen-7B** | **51.6** |
281
+
282
+ ### 翻译评测
283
+
284
+ 我们使用[WMT22](https://www.statmt.org/wmt22/translation-task.html)中-英(zh-en)和英-中(en-zh)数据集(5-shot BLEU)评测:
285
+
286
+ We compared the translation capabilities of pre-trained models on [WMT22](https://www.statmt.org/wmt22/translation-task.html) zh-en and en-zh (5-shot BLEU), and the results are as follows:
287
+
288
+ | Model | Avg. | zh-en | en-zh |
289
+ |:------------|:--------:|:--------:|:--------:|
290
+ | InternLM-7B | 11.8 | 9.0 | 14.5 |
291
+ | LLaMA-7B | 12.7 | 16.7 | 8.7 |
292
+ | LLaMA-13B | 15.8 | 19.5 | 12.0 |
293
+ | LLaMA2-7B | 19.9 | 21.9 | 17.9 |
294
+ | Bloom-7B | 20.3 | 19.1 | 21.4 |
295
+ | LLaMA2-13B | 23.3 | 22.4 | 24.2 |
296
+ | PolyLM-13B | 23.6 | 20.2 | 27.0 |
297
+ | Baichuan-7B | 24.6 | 22.6 | 26.6 |
298
+ | **Qwen-7B** | **27.5** | **24.3** | **30.6** |
299
+
300
+ ### 长序列评测(Long-Context Evaluation)
301
+
302
+ 我们引入NTK插值,LogN注意力缩放,窗口注意力等技巧,将模型的上下文长度扩展到8K以上。在arXiv数据上使用PPL指标测试Qwen-7B在不同长度下的表现,结果如下:
303
+
304
+ **(若要启用NTK和LogN注意力缩放,请将config.json里的`use_dynamc_ntk`和`use_logn_attn`设置为true)**
305
+
306
+ We introduce NTK-aware interpolation, LogN attention scaling, Window attention, etc. to extend the context length to over 8K tokens. We conduct language modeling experiments on the arXiv dataset with the PPL evaluation. Results are demonstrated below:
307
+
308
+ **(To use NTK interpolation and LogN scaling, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)**
309
+
310
+ <table>
311
+ <tr>
312
+ <th rowspan="2">Model</th><th colspan="5" align="center">序列长度 Sequence Length</th>
313
+ </tr>
314
+ <tr>
315
+ <th align="center">1024</th><th align="center">2048</th><th align="center">4096</th><th align="center">8192</th><th align="center">16384</th>
316
+ </tr>
317
+ <tr>
318
+ <td>Qwen-7B</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center">39.35</td><td align="center">469.81</td><td align="center">2645.09</td>
319
+ </tr>
320
+ <tr>
321
+ <td>+ dynamic_ntk</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center">3.59</td><td align="center">3.66</td><td align="center">5.71</td>
322
+ </tr>
323
+ <tr>
324
+ <td>+ dynamic_ntk + logn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center">3.56</td><td align="center">4.62</td>
325
+ </tr>
326
+ <tr>
327
+ <td>+ dynamic_ntk + logn + window_attn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center"><b>3.49</b></td><td align="center"><b>4.32</b></td>
328
+ </tr>
329
+ </table>
330
+
331
+ ## 量化(Quantization)
332
+
333
+ 如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用���化模型。在开始前,确保你已经安装了`bitsandbytes`。请注意,`bitsandbytes`的安装要求是:
334
+
335
+ We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes` are:
336
+
337
+ ```
338
+ **Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
339
+ ```
340
+
341
+ Windows用户需安装特定版本的`bitsandbytes`,可选项包括[bitsandbytes-windows-webui](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
342
+
343
+ Windows users should find another option, which might be [bitsandbytes-windows-webui](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels).
344
+
345
+ ```bash
346
+ pip install bitsandbytes
347
+ ```
348
+
349
+ 你只需要在`AutoModelForCausalLM.from_pretrained`中添加你的量化配置,即可使用量化模型。如下所示:
350
+
351
+ Then you only need to add your quantization configuration to `AutoModelForCausalLM.from_pretrained`. See the example below:
352
+
353
+ ```python
354
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig
355
+
356
+ # quantization configuration for NF4 (4 bits)
357
+ quantization_config = BitsAndBytesConfig(
358
+ load_in_4bit=True,
359
+ bnb_4bit_quant_type='nf4',
360
+ bnb_4bit_compute_dtype=torch.bfloat16
361
+ )
362
+
363
+ # quantization configuration for Int8 (8 bits)
364
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
365
+
366
+ model = AutoModelForCausalLM.from_pretrained(
367
+ "Qwen/Qwen-7B",
368
+ device_map="cuda:0",
369
+ quantization_config=quantization_config,
370
+ max_memory=max_memory,
371
+ trust_remote_code=True,
372
+ ).eval()
373
+ ```
374
+
375
+ 上述方法可以让我们将模型量化成`NF4`和`Int8`精度的模型进行读取,帮助我们节省显存开销。我们也提供了相关性能数据。我们发现尽管模型在效果上存在损失,但模型的显存开销大幅降低。
376
+
377
+ With this method, it is available to load Qwen-7B in `NF4` and `Int8`, which saves you memory usage. We provide related statistics of model performance below. We find that the quantization downgrades the effectiveness slightly but significantly increases inference efficiency and reduces memory costs.
378
+
379
+ | Precision | MMLU | Memory |
380
+ | :--------- | :-------: | :-----: |
381
+ | BF16 | 56.7 | 16.2G |
382
+ | Int8 | 52.8 | 10.1G |
383
+ | NF4 | 48.9 | 7.4G |
384
+
385
+ ## 评测复现(Reproduction)
386
+
387
+ 我们提供了评测脚本,方便大家复现模型效果,详见[链接](https://github.com/QwenLM/Qwen-7B/tree/main/eval)。提示:由于硬件和框架造成的舍入误差,复现结果如有小幅波动属于正常现象。
388
+
389
+ We have provided evaluation scripts to reproduce the performance of our model, details as [link](https://github.com/QwenLM/Qwen-7B/tree/main/eval).
390
+
391
+ ## 使用协议(License Agreement)
392
+
393
+ 我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen-7B/blob/main/LICENSE)了解具体的开源协议细节。
394
+
395
+ Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen-7B/blob/main/LICENSE) for more details about the license.
396
+
397
+ ## 联系我们(Contact Us)
398
+
399
+ 如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
400
+
401
+ If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
402
+
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/Qwen_Qwen-7B",
3
+ "activation": "swiglu",
4
+ "apply_residual_connection_post_layernorm": false,
5
+ "architectures": [
6
+ "QWenLMHeadModel"
7
+ ],
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_qwen.QWenConfig",
11
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
12
+ },
13
+ "bf16": true,
14
+ "bias_dropout_fusion": true,
15
+ "bos_token_id": 151643,
16
+ "embd_pdrop": 0.0,
17
+ "eos_token_id": 151643,
18
+ "ffn_hidden_size": 22016,
19
+ "fp16": false,
20
+ "fp32": false,
21
+ "initializer_range": 0.02,
22
+ "kv_channels": 128,
23
+ "layer_norm_epsilon": 1e-06,
24
+ "model_type": "qwen",
25
+ "n_embd": 4096,
26
+ "n_head": 32,
27
+ "n_inner": null,
28
+ "n_layer": 32,
29
+ "n_positions": 6144,
30
+ "no_bias": true,
31
+ "onnx_safe": null,
32
+ "padded_vocab_size": 151936,
33
+ "params_dtype": "torch.bfloat16",
34
+ "pos_emb": "rotary",
35
+ "resid_pdrop": 0.1,
36
+ "rotary_emb_base": 10000,
37
+ "rotary_pct": 1.0,
38
+ "scale_attn_weights": true,
39
+ "seq_length": 2048,
40
+ "tie_word_embeddings": false,
41
+ "tokenizer_type": "QWenTokenizer",
42
+ "torch_dtype": "float16",
43
+ "transformers_version": "4.31.0",
44
+ "use_cache": true,
45
+ "use_dynamic_ntk": true,
46
+ "use_flash_attn": true,
47
+ "use_logn_attn": true,
48
+ "vocab_size": 151936
49
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+ attribute_map = {
13
+ "hidden_size": "n_embd",
14
+ "num_attention_heads": "n_head",
15
+ "max_position_embeddings": "n_positions",
16
+ "num_hidden_layers": "n_layer",
17
+ }
18
+
19
+ def __init__(
20
+ self,
21
+ vocab_size=151851,
22
+ n_embd=4096,
23
+ n_layer=32,
24
+ n_head=32,
25
+ n_inner=None,
26
+ embd_pdrop=0.0,
27
+ attn_pdrop=0.0,
28
+ layer_norm_epsilon=1e-5,
29
+ initializer_range=0.02,
30
+ scale_attn_weights=True,
31
+ use_cache=True,
32
+ eos_token_id=151643,
33
+ apply_residual_connection_post_layernorm=False,
34
+ bf16=False,
35
+ fp16=False,
36
+ fp32=False,
37
+ kv_channels=128,
38
+ rotary_pct=1.0,
39
+ rotary_emb_base=10000,
40
+ use_dynamic_ntk=False,
41
+ use_logn_attn=False,
42
+ use_flash_attn=True,
43
+ ffn_hidden_size=22016,
44
+ no_bias=True,
45
+ tie_word_embeddings=False,
46
+ **kwargs,
47
+ ):
48
+ self.eos_token_id = eos_token_id
49
+ super().__init__(
50
+ eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
51
+ )
52
+
53
+ self.vocab_size = vocab_size
54
+ self.n_embd = n_embd
55
+ self.n_layer = n_layer
56
+ self.n_head = n_head
57
+ self.n_inner = n_inner
58
+ self.embd_pdrop = embd_pdrop
59
+ self.attn_pdrop = attn_pdrop
60
+ self.layer_norm_epsilon = layer_norm_epsilon
61
+ self.initializer_range = initializer_range
62
+ self.scale_attn_weights = scale_attn_weights
63
+ self.use_cache = use_cache
64
+ self.apply_residual_connection_post_layernorm = (
65
+ apply_residual_connection_post_layernorm
66
+ )
67
+ self.bf16 = bf16
68
+ self.fp16 = fp16
69
+ self.fp32 = fp32
70
+ self.kv_channels = kv_channels
71
+ self.rotary_pct = rotary_pct
72
+ self.rotary_emb_base = rotary_emb_base
73
+ self.use_dynamic_ntk = use_dynamic_ntk
74
+ self.use_logn_attn = use_logn_attn
75
+ self.use_flash_attn = use_flash_attn
76
+ self.ffn_hidden_size = ffn_hidden_size
77
+ self.no_bias = no_bias
78
+ self.tie_word_embeddings = tie_word_embeddings
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "raw",
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 512,
5
+ "pad_token_id": 151643,
6
+ "stop_words_ids": [[151643]],
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.8,
10
+ "transformers_version": "4.31.0"
11
+ }
gptq_model-4bit--1g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e67efcd39fbe1667c1bc2b6ba3de7c508e846d2c47feb84024e6305058589d5d
3
+ size 5737572456
modeling_qwen.py ADDED
@@ -0,0 +1,1210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
+
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
17
+ from transformers.generation.logits_process import LogitsProcessorList
18
+
19
+ if TYPE_CHECKING:
20
+ from transformers.generation.streamers import BaseStreamer
21
+ from transformers.generation.utils import GenerateOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ SUPPORT_CUDA = torch.cuda.is_available()
36
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
38
+
39
+ from .configuration_qwen import QWenConfig
40
+ from .qwen_generation_utils import (
41
+ HistoryType,
42
+ make_context,
43
+ decode_tokens,
44
+ get_stop_words_ids,
45
+ StopWordsLogitsProcessor,
46
+ )
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "qwen"
52
+ _CONFIG_FOR_DOC = "QWenConfig"
53
+
54
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
55
+
56
+ _ERROR_BAD_CHAT_FORMAT = """\
57
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
58
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
59
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
60
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
61
+ """
62
+
63
+ _SENTINEL = object()
64
+ _ERROR_STREAM_IN_CHAT = """\
65
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
66
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
67
+ """
68
+
69
+ apply_rotary_emb_func = None
70
+ rms_norm = None
71
+ flash_attn_unpadded_func = None
72
+
73
+
74
+ def _import_flash_attn():
75
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
76
+ try:
77
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
78
+ apply_rotary_emb_func = __apply_rotary_emb_func
79
+ except ImportError:
80
+ logger.warn(
81
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
82
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
83
+ )
84
+
85
+ try:
86
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
87
+ rms_norm = __rms_norm
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
92
+ )
93
+
94
+ try:
95
+ import flash_attn
96
+ if not hasattr(flash_attn, '__version__'):
97
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
98
+ else:
99
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
100
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
101
+ else:
102
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
103
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
104
+ except ImportError:
105
+ logger.warn(
106
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
107
+ "https://github.com/Dao-AILab/flash-attention"
108
+ )
109
+
110
+
111
+ class FlashSelfAttention(torch.nn.Module):
112
+ def __init__(
113
+ self,
114
+ causal=False,
115
+ softmax_scale=None,
116
+ attention_dropout=0.0,
117
+ ):
118
+ super().__init__()
119
+ assert flash_attn_unpadded_func is not None, (
120
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
121
+ )
122
+ assert (
123
+ rearrange is not None
124
+ ), "Please install einops first, e.g., with pip install einops"
125
+ self.causal = causal
126
+ self.softmax_scale = softmax_scale
127
+ self.dropout_p = attention_dropout
128
+
129
+ def forward(self, q, k, v):
130
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
131
+ assert all((i.is_cuda for i in (q, k, v)))
132
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
133
+ seqlen_k = k.shape[1]
134
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
135
+ cu_seqlens_q = torch.arange(
136
+ 0,
137
+ (batch_size + 1) * seqlen_q,
138
+ step=seqlen_q,
139
+ dtype=torch.int32,
140
+ device=q.device,
141
+ )
142
+
143
+ if self.training:
144
+ assert seqlen_k == seqlen_q
145
+
146
+ is_causal = self.causal
147
+ cu_seqlens_k = cu_seqlens_q
148
+ else:
149
+ is_causal = seqlen_q == seqlen_k
150
+ cu_seqlens_k = torch.arange(
151
+ 0,
152
+ (batch_size + 1) * seqlen_k,
153
+ step=seqlen_k,
154
+ dtype=torch.int32,
155
+ device=q.device,
156
+ )
157
+ self.dropout_p = 0
158
+ output = flash_attn_unpadded_func(
159
+ q,
160
+ k,
161
+ v,
162
+ cu_seqlens_q,
163
+ cu_seqlens_k,
164
+ seqlen_q,
165
+ seqlen_k,
166
+ self.dropout_p,
167
+ softmax_scale=self.softmax_scale,
168
+ causal=is_causal,
169
+ )
170
+
171
+ output = rearrange(output, "(b s) ... -> b s ...", b=batch_size)
172
+ return output
173
+
174
+
175
+ class QWenAttention(nn.Module):
176
+ def __init__(self, config, layer_number=None):
177
+ super().__init__()
178
+
179
+ max_positions = config.max_position_embeddings
180
+ self.register_buffer(
181
+ "bias",
182
+ torch.tril(
183
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
184
+ ).view(1, 1, max_positions, max_positions),
185
+ persistent=False,
186
+ )
187
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
188
+ self.layer_number = max(1, layer_number)
189
+ self.params_dtype = config.params_dtype
190
+ self.seq_length = config.seq_length
191
+
192
+ self.hidden_size = config.hidden_size
193
+ self.split_size = config.hidden_size
194
+ self.num_heads = config.num_attention_heads
195
+ self.head_dim = self.hidden_size // self.num_heads
196
+
197
+ self.use_flash_attn = config.use_flash_attn
198
+ self.scale_attn_weights = True
199
+
200
+ self.layer_idx = None
201
+
202
+ self.projection_size = config.kv_channels * config.num_attention_heads
203
+
204
+ assert self.projection_size % config.num_attention_heads == 0
205
+ self.hidden_size_per_attention_head = (
206
+ self.projection_size // config.num_attention_heads
207
+ )
208
+
209
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
210
+
211
+ self.c_proj = nn.Linear(
212
+ config.hidden_size, self.projection_size, bias=not config.no_bias
213
+ )
214
+
215
+ self.is_fp32 = not (config.bf16 or config.fp16)
216
+ if (
217
+ self.use_flash_attn
218
+ and flash_attn_unpadded_func is not None
219
+ and not self.is_fp32
220
+ ):
221
+ self.core_attention_flash = FlashSelfAttention(
222
+ causal=True, attention_dropout=config.attn_pdrop
223
+ )
224
+
225
+ self.bf16 = config.bf16
226
+
227
+ if config.rotary_pct == 1.0:
228
+ self.rotary_ndims = None
229
+ else:
230
+ assert config.rotary_pct < 1
231
+ self.rotary_ndims = int(
232
+ self.hidden_size_per_attention_head * config.rotary_pct
233
+ )
234
+ dim = (
235
+ self.rotary_ndims
236
+ if self.rotary_ndims is not None
237
+ else self.hidden_size_per_attention_head
238
+ )
239
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
240
+
241
+ self.use_dynamic_ntk = config.use_dynamic_ntk
242
+ self.use_logn_attn = config.use_logn_attn
243
+
244
+ logn_list = [
245
+ math.log(i, self.seq_length) if i > self.seq_length else 1
246
+ for i in range(1, 32768)
247
+ ]
248
+ self.logn_tensor = torch.Tensor(logn_list)[None, :, None, None]
249
+ self._ntk_cached = 1.0
250
+
251
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
252
+
253
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
254
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
255
+
256
+ if self.scale_attn_weights:
257
+ attn_weights = attn_weights / torch.full(
258
+ [],
259
+ value.size(-1) ** 0.5,
260
+ dtype=attn_weights.dtype,
261
+ device=attn_weights.device,
262
+ )
263
+
264
+ query_length, key_length = query.size(-2), key.size(-2)
265
+ causal_mask = self.bias[
266
+ :, :, key_length - query_length : key_length, :key_length
267
+ ]
268
+ mask_value = torch.finfo(attn_weights.dtype).min
269
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
270
+ attn_weights.device
271
+ )
272
+ attn_weights = torch.where(
273
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
274
+ )
275
+
276
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
277
+
278
+ attn_weights = attn_weights.type(value.dtype)
279
+ attn_weights = self.attn_dropout(attn_weights)
280
+
281
+ if head_mask is not None:
282
+ attn_weights = attn_weights * head_mask
283
+
284
+ attn_output = torch.matmul(attn_weights, value)
285
+ attn_output = attn_output.transpose(1, 2)
286
+
287
+ return attn_output, attn_weights
288
+
289
+ def _upcast_and_reordered_attn(
290
+ self, query, key, value, attention_mask=None, head_mask=None
291
+ ):
292
+ bsz, num_heads, q_seq_len, dk = query.size()
293
+ _, _, k_seq_len, _ = key.size()
294
+
295
+ attn_weights = torch.empty(
296
+ bsz * num_heads,
297
+ q_seq_len,
298
+ k_seq_len,
299
+ dtype=torch.float32,
300
+ device=query.device,
301
+ )
302
+
303
+ scale_factor = 1.0
304
+ if self.scale_attn_weights:
305
+ scale_factor /= float(value.size(-1)) ** 0.5
306
+
307
+ with autocast(enabled=False):
308
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
309
+ -1, dk, k_seq_len
310
+ )
311
+ attn_weights = torch.baddbmm(
312
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
313
+ )
314
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
315
+
316
+ query_length, key_length = query.size(-2), key.size(-2)
317
+ causal_mask = self.bias[
318
+ :, :, key_length - query_length : key_length, :key_length
319
+ ]
320
+ mask_value = torch.finfo(attn_weights.dtype).min
321
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
322
+ attn_weights.device
323
+ )
324
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
325
+
326
+ if attention_mask is not None:
327
+ attn_weights = attn_weights + attention_mask
328
+
329
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
330
+
331
+ if attn_weights.dtype != torch.float32:
332
+ raise RuntimeError(
333
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
334
+ )
335
+ attn_weights = attn_weights.type(value.dtype)
336
+ attn_weights = self.attn_dropout(attn_weights)
337
+
338
+ if head_mask is not None:
339
+ attn_weights = attn_weights * head_mask
340
+
341
+ attn_output = torch.matmul(attn_weights, value)
342
+
343
+ return attn_output, attn_weights
344
+
345
+ def _split_heads(self, tensor, num_heads, attn_head_size):
346
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
347
+ tensor = tensor.view(new_shape)
348
+ return tensor
349
+
350
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
351
+ tensor = tensor.contiguous()
352
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
353
+ return tensor.view(new_shape)
354
+
355
+ def forward(
356
+ self,
357
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
358
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
359
+ attention_mask: Optional[torch.FloatTensor] = None,
360
+ head_mask: Optional[torch.FloatTensor] = None,
361
+ encoder_hidden_states: Optional[torch.Tensor] = None,
362
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
363
+ output_attentions: Optional[bool] = False,
364
+ use_cache: Optional[bool] = False,
365
+ ):
366
+
367
+ mixed_x_layer = self.c_attn(hidden_states)
368
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
369
+
370
+ query = self._split_heads(query, self.num_heads, self.head_dim)
371
+ key = self._split_heads(key, self.num_heads, self.head_dim)
372
+ value = self._split_heads(value, self.num_heads, self.head_dim)
373
+
374
+ kv_seq_len = hidden_states.size()[1]
375
+ if layer_past:
376
+ # layer past[0] shape: bs * seq_len * head_num * dim
377
+ kv_seq_len += layer_past[0].shape[1]
378
+ if (
379
+ self.use_dynamic_ntk
380
+ and kv_seq_len == hidden_states.size()[1]
381
+ and not self.training
382
+ ):
383
+ context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
384
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
385
+ ntk_alpha = max(ntk_alpha, 1)
386
+ self._ntk_cached = ntk_alpha
387
+ else:
388
+ ntk_alpha = self._ntk_cached
389
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
390
+ hidden_states.device
391
+ )
392
+
393
+ if rotary_pos_emb is not None:
394
+ if isinstance(rotary_pos_emb, tuple):
395
+ rotary_pos_emb = rotary_pos_emb
396
+ else:
397
+ rotary_pos_emb = (rotary_pos_emb,) * 2
398
+
399
+ if rotary_pos_emb is not None:
400
+ q_pos_emb, k_pos_emb = rotary_pos_emb
401
+ # Slice the pos emb for current inference
402
+ cur_len = query.shape[1]
403
+ q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
404
+ k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
405
+ query = apply_rotary_pos_emb(query, q_pos_emb)
406
+ key = apply_rotary_pos_emb(key, k_pos_emb)
407
+
408
+ if layer_past is not None:
409
+ past_key, past_value = layer_past[0], layer_past[1]
410
+ key = torch.cat((past_key, key), dim=1)
411
+ value = torch.cat((past_value, value), dim=1)
412
+
413
+ if use_cache:
414
+ present = (key, value)
415
+ else:
416
+ present = None
417
+
418
+ if self.use_logn_attn and not self.training:
419
+ if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
420
+ self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
421
+ seq_start = key.size(1) - query.size(1)
422
+ seq_end = key.size(1)
423
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
424
+ query = query * logn_tensor.expand_as(query)
425
+
426
+ if (
427
+ self.use_flash_attn
428
+ and flash_attn_unpadded_func is not None
429
+ and not self.is_fp32
430
+ and query.is_cuda
431
+ ):
432
+ q, k, v = query, key, value
433
+ context_layer = self.core_attention_flash(q, k, v)
434
+
435
+ context_layer = rearrange(
436
+ context_layer, "b s h d -> b s (h d)"
437
+ ).contiguous()
438
+ else:
439
+ query = query.permute(0, 2, 1, 3)
440
+ key = key.permute(0, 2, 1, 3)
441
+ value = value.permute(0, 2, 1, 3)
442
+ attn_output, attn_weight = self._attn(
443
+ query, key, value, attention_mask, head_mask
444
+ )
445
+ context_layer = self._merge_heads(
446
+ attn_output, self.num_heads, self.head_dim
447
+ )
448
+
449
+ attn_output = self.c_proj(context_layer)
450
+ outputs = (attn_output, present)
451
+ if output_attentions:
452
+ if (
453
+ self.use_flash_attn
454
+ and flash_attn_unpadded_func is not None
455
+ and not self.is_fp32
456
+ ):
457
+ raise ValueError("Cannot output attentions while using flash-attn")
458
+ else:
459
+ outputs += (attn_weight,)
460
+
461
+ return outputs
462
+
463
+
464
+ class QWenMLP(nn.Module):
465
+ def __init__(self, config):
466
+ super().__init__()
467
+ self.w1 = nn.Linear(
468
+ config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias
469
+ )
470
+ self.w2 = nn.Linear(
471
+ config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias
472
+ )
473
+ ff_dim_in = config.ffn_hidden_size // 2
474
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
475
+
476
+ def forward(self, hidden_states):
477
+ a1 = self.w1(hidden_states)
478
+ a2 = self.w2(hidden_states)
479
+ intermediate_parallel = a1 * F.silu(a2)
480
+ output = self.c_proj(intermediate_parallel)
481
+ return output
482
+
483
+
484
+ class QWenBlock(nn.Module):
485
+ def __init__(self, config, layer_idx=None, num_expert=1):
486
+ super().__init__()
487
+ self.num_expert = num_expert
488
+ self.layer_number = layer_idx
489
+ self.apply_residual_connection_post_layernorm = (
490
+ config.apply_residual_connection_post_layernorm
491
+ )
492
+ hidden_size = config.hidden_size
493
+ self.apply_residual_connection_post_layernorm = (
494
+ config.apply_residual_connection_post_layernorm
495
+ )
496
+ self.bf16 = config.bf16
497
+
498
+ self.ln_1 = RMSNorm(
499
+ hidden_size,
500
+ eps=config.layer_norm_epsilon,
501
+ )
502
+ self.attn = QWenAttention(config, layer_number=layer_idx)
503
+ self.ln_2 = RMSNorm(
504
+ hidden_size,
505
+ eps=config.layer_norm_epsilon,
506
+ )
507
+
508
+ self.mlp = QWenMLP(config)
509
+
510
+ def forward(
511
+ self,
512
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
513
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
514
+ attention_mask: Optional[torch.FloatTensor] = None,
515
+ head_mask: Optional[torch.FloatTensor] = None,
516
+ encoder_hidden_states: Optional[torch.Tensor] = None,
517
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
518
+ use_cache: Optional[bool] = False,
519
+ output_attentions: Optional[bool] = False,
520
+ ):
521
+ layernorm_output = self.ln_1(hidden_states)
522
+
523
+ attn_outputs = self.attn(
524
+ layernorm_output,
525
+ layer_past=layer_past,
526
+ attention_mask=attention_mask,
527
+ head_mask=head_mask,
528
+ use_cache=use_cache,
529
+ output_attentions=output_attentions,
530
+ )
531
+ attn_output = attn_outputs[0]
532
+
533
+ outputs = attn_outputs[1:]
534
+
535
+ if self.apply_residual_connection_post_layernorm:
536
+ residual = layernorm_output
537
+ else:
538
+ residual = hidden_states
539
+ layernorm_input = attn_output + residual
540
+
541
+ layernorm_output = self.ln_2(layernorm_input)
542
+
543
+ if self.apply_residual_connection_post_layernorm:
544
+ residual = layernorm_output
545
+ else:
546
+ residual = layernorm_input
547
+
548
+ mlp_output = self.mlp(layernorm_output)
549
+ hidden_states = residual + mlp_output
550
+
551
+ if use_cache:
552
+ outputs = (hidden_states,) + outputs
553
+ else:
554
+ outputs = (hidden_states,) + outputs[1:]
555
+
556
+ return outputs
557
+
558
+
559
+ class QWenPreTrainedModel(PreTrainedModel):
560
+ config_class = QWenConfig
561
+ base_model_prefix = "transformer"
562
+ is_parallelizable = False
563
+ supports_gradient_checkpointing = True
564
+ _no_split_modules = ["QWenBlock"]
565
+
566
+ def __init__(self, *inputs, **kwargs):
567
+ super().__init__(*inputs, **kwargs)
568
+
569
+ def _init_weights(self, module):
570
+ """Initialize the weights."""
571
+ if isinstance(module, nn.Linear):
572
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
573
+ if module.bias is not None:
574
+ module.bias.data.zero_()
575
+ elif isinstance(module, nn.Embedding):
576
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
577
+ if module.padding_idx is not None:
578
+ module.weight.data[module.padding_idx].zero_()
579
+ elif isinstance(module, RMSNorm):
580
+ module.weight.data.fill_(1.0)
581
+
582
+ for name, p in module.named_parameters():
583
+ if name == "c_proj.weight":
584
+ p.data.normal_(
585
+ mean=0.0,
586
+ std=(
587
+ self.config.initializer_range
588
+ / math.sqrt(2 * self.config.n_layer)
589
+ ),
590
+ )
591
+
592
+ def _set_gradient_checkpointing(self, module, value=False):
593
+ if isinstance(module, QWenModel):
594
+ module.gradient_checkpointing = value
595
+
596
+
597
+ class QWenModel(QWenPreTrainedModel):
598
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
599
+
600
+ def __init__(self, config):
601
+ super().__init__(config)
602
+ self.vocab_size = config.padded_vocab_size
603
+ self.num_hidden_layers = config.num_hidden_layers
604
+ self.embed_dim = config.hidden_size
605
+
606
+ max_sequence_length = config.max_position_embeddings
607
+ self.position_embedding_type = config.pos_emb
608
+ self.gradient_checkpointing = False
609
+
610
+ if self.position_embedding_type == "learned":
611
+ self.wpe = nn.Embedding(max_sequence_length, self.embed_dim)
612
+ self.init_method(self.position_embeddings.weight)
613
+ self._position_embeddings_key = "position_embeddings"
614
+ self.init_method(self.position_embeddings.weight)
615
+ else:
616
+ self.wpe = None
617
+ self._position_embeddings_key = ""
618
+
619
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
620
+
621
+ self.drop = nn.Dropout(config.embd_pdrop)
622
+ self.h = nn.ModuleList(
623
+ [
624
+ QWenBlock(
625
+ config,
626
+ layer_idx=i,
627
+ )
628
+ for i in range(config.num_hidden_layers)
629
+ ]
630
+ )
631
+ self.ln_f = RMSNorm(
632
+ self.embed_dim,
633
+ eps=config.layer_norm_epsilon,
634
+ )
635
+
636
+ self.post_init()
637
+
638
+ def get_input_embeddings(self):
639
+ return self.wte
640
+
641
+ def set_input_embeddings(self, new_embeddings):
642
+ self.wte = new_embeddings
643
+
644
+ def forward(
645
+ self,
646
+ input_ids: Optional[torch.LongTensor] = None,
647
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
648
+ attention_mask: Optional[torch.FloatTensor] = None,
649
+ token_type_ids: Optional[torch.LongTensor] = None,
650
+ position_ids: Optional[torch.LongTensor] = None,
651
+ head_mask: Optional[torch.FloatTensor] = None,
652
+ inputs_embeds: Optional[torch.FloatTensor] = None,
653
+ encoder_hidden_states: Optional[torch.Tensor] = None,
654
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
655
+ use_cache: Optional[bool] = None,
656
+ output_attentions: Optional[bool] = None,
657
+ output_hidden_states: Optional[bool] = None,
658
+ return_dict: Optional[bool] = None,
659
+ ):
660
+ output_attentions = (
661
+ output_attentions
662
+ if output_attentions is not None
663
+ else self.config.output_attentions
664
+ )
665
+ output_hidden_states = (
666
+ output_hidden_states
667
+ if output_hidden_states is not None
668
+ else self.config.output_hidden_states
669
+ )
670
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
671
+ return_dict = (
672
+ return_dict if return_dict is not None else self.config.use_return_dict
673
+ )
674
+
675
+ if input_ids is not None and inputs_embeds is not None:
676
+ raise ValueError(
677
+ "You cannot specify both input_ids and inputs_embeds at the same time"
678
+ )
679
+ elif input_ids is not None:
680
+ input_shape = input_ids.size()
681
+ input_ids = input_ids.view(-1, input_shape[-1])
682
+ batch_size = input_ids.shape[0]
683
+ elif inputs_embeds is not None:
684
+ input_shape = inputs_embeds.size()[:-1]
685
+ batch_size = inputs_embeds.shape[0]
686
+ else:
687
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
688
+
689
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
690
+
691
+ if token_type_ids is not None:
692
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
693
+ if position_ids is not None:
694
+ position_ids = position_ids.view(-1, input_shape[-1])
695
+
696
+ if past_key_values is None:
697
+ past_length = 0
698
+ past_key_values = tuple([None] * len(self.h))
699
+ else:
700
+ past_length = past_key_values[0][0].size(-2)
701
+
702
+ if position_ids is None:
703
+ position_ids = torch.arange(
704
+ past_length,
705
+ input_shape[-1] + past_length,
706
+ dtype=torch.long,
707
+ device=device,
708
+ )
709
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
710
+
711
+ if attention_mask is not None:
712
+ if batch_size <= 0:
713
+ raise ValueError("batch_size has to be defined and > 0")
714
+ attention_mask = attention_mask.view(batch_size, -1)
715
+ attention_mask = attention_mask[:, None, None, :]
716
+ attention_mask = attention_mask.to(dtype=self.dtype)
717
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
718
+
719
+ encoder_attention_mask = None
720
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
721
+
722
+ if inputs_embeds is None:
723
+ inputs_embeds = self.wte(input_ids)
724
+ hidden_states = inputs_embeds
725
+ if self.wpe is not None:
726
+ position_embeds = self.wpe(position_ids)
727
+ hidden_states = hidden_states + position_embeds
728
+
729
+ hidden_states = self.drop(hidden_states)
730
+ output_shape = input_shape + (hidden_states.size(-1),)
731
+
732
+ if self.gradient_checkpointing and self.training:
733
+ if use_cache:
734
+ logger.warning_once(
735
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
736
+ )
737
+ use_cache = False
738
+
739
+ presents = () if use_cache else None
740
+ all_self_attentions = () if output_attentions else None
741
+ all_hidden_states = () if output_hidden_states else None
742
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
743
+
744
+ if output_hidden_states:
745
+ all_hidden_states = all_hidden_states + (hidden_states,)
746
+
747
+ if self.gradient_checkpointing and self.training:
748
+
749
+ def create_custom_forward(module):
750
+ def custom_forward(*inputs):
751
+ # None for past_key_value
752
+ return module(*inputs, use_cache, output_attentions)
753
+
754
+ return custom_forward
755
+
756
+ outputs = torch.utils.checkpoint.checkpoint(
757
+ create_custom_forward(block),
758
+ hidden_states,
759
+ None,
760
+ attention_mask,
761
+ head_mask[i],
762
+ encoder_hidden_states,
763
+ encoder_attention_mask,
764
+ )
765
+ else:
766
+ outputs = block(
767
+ hidden_states,
768
+ layer_past=layer_past,
769
+ attention_mask=attention_mask,
770
+ head_mask=head_mask[i],
771
+ encoder_hidden_states=encoder_hidden_states,
772
+ encoder_attention_mask=encoder_attention_mask,
773
+ use_cache=use_cache,
774
+ output_attentions=output_attentions,
775
+ )
776
+
777
+ hidden_states = outputs[0]
778
+ if use_cache is True:
779
+ presents = presents + (outputs[2 if output_attentions else 1],)
780
+
781
+ if output_attentions:
782
+ all_self_attentions = all_self_attentions + (outputs[1],)
783
+
784
+ hidden_states = self.ln_f(hidden_states)
785
+ hidden_states = hidden_states.view(output_shape)
786
+
787
+ if not return_dict:
788
+ return tuple(
789
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
790
+ )
791
+
792
+ return BaseModelOutputWithPast(
793
+ last_hidden_state=hidden_states,
794
+ past_key_values=presents,
795
+ hidden_states=all_hidden_states,
796
+ attentions=all_self_attentions,
797
+ )
798
+
799
+
800
+ class QWenLMHeadModel(QWenPreTrainedModel):
801
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
802
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
803
+
804
+ def __init__(self, config):
805
+ super().__init__(config)
806
+ assert (
807
+ config.bf16 + config.fp16 + config.fp32 <= 1
808
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
809
+
810
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
811
+
812
+ if autoset_precision:
813
+ if SUPPORT_BF16:
814
+ logger.warn(
815
+ "The model is automatically converting to bf16 for faster inference. "
816
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
817
+ )
818
+ config.bf16 = True
819
+ elif SUPPORT_FP16:
820
+ logger.warn(
821
+ "The model is automatically converting to fp16 for faster inference. "
822
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
823
+ )
824
+ config.fp16 = True
825
+ else:
826
+ config.fp32 = True
827
+
828
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
829
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
830
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
831
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
832
+ if config.fp32:
833
+ if SUPPORT_BF16:
834
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
835
+ elif SUPPORT_FP16:
836
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
837
+
838
+ if config.use_flash_attn == "auto":
839
+ if config.bf16 or config.fp16:
840
+ logger.warn("Try importing flash-attention for faster inference...")
841
+ config.use_flash_attn = True
842
+ else:
843
+ config.use_flash_attn = False
844
+ if config.use_flash_attn and config.fp32:
845
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
846
+
847
+ if config.use_flash_attn:
848
+ _import_flash_attn()
849
+
850
+ self.transformer = QWenModel(config)
851
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
852
+
853
+ if config.bf16:
854
+ self.transformer.bfloat16()
855
+ self.lm_head.bfloat16()
856
+ if config.fp16:
857
+ self.transformer.half()
858
+ self.lm_head.half()
859
+ self.post_init()
860
+
861
+ def get_output_embeddings(self):
862
+ return self.lm_head
863
+
864
+ def set_output_embeddings(self, new_embeddings):
865
+ self.lm_head = new_embeddings
866
+
867
+ def prepare_inputs_for_generation(
868
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
869
+ ):
870
+ token_type_ids = kwargs.get("token_type_ids", None)
871
+ if past_key_values:
872
+ input_ids = input_ids[:, -1].unsqueeze(-1)
873
+ if token_type_ids is not None:
874
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
875
+
876
+ attention_mask = kwargs.get("attention_mask", None)
877
+ position_ids = kwargs.get("position_ids", None)
878
+
879
+ if attention_mask is not None and position_ids is None:
880
+ position_ids = attention_mask.long().cumsum(-1) - 1
881
+ position_ids.masked_fill_(attention_mask == 0, 1)
882
+ if past_key_values:
883
+ position_ids = position_ids[:, -1].unsqueeze(-1)
884
+ else:
885
+ position_ids = None
886
+
887
+ if inputs_embeds is not None and past_key_values is None:
888
+ model_inputs = {"inputs_embeds": inputs_embeds}
889
+ else:
890
+ model_inputs = {"input_ids": input_ids}
891
+
892
+ model_inputs.update(
893
+ {
894
+ "past_key_values": past_key_values,
895
+ "use_cache": kwargs.get("use_cache"),
896
+ "position_ids": position_ids,
897
+ "attention_mask": attention_mask,
898
+ "token_type_ids": token_type_ids,
899
+ }
900
+ )
901
+ return model_inputs
902
+
903
+ def forward(
904
+ self,
905
+ input_ids: Optional[torch.LongTensor] = None,
906
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
907
+ attention_mask: Optional[torch.FloatTensor] = None,
908
+ token_type_ids: Optional[torch.LongTensor] = None,
909
+ position_ids: Optional[torch.LongTensor] = None,
910
+ head_mask: Optional[torch.FloatTensor] = None,
911
+ inputs_embeds: Optional[torch.FloatTensor] = None,
912
+ encoder_hidden_states: Optional[torch.Tensor] = None,
913
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
914
+ labels: Optional[torch.LongTensor] = None,
915
+ use_cache: Optional[bool] = None,
916
+ output_attentions: Optional[bool] = None,
917
+ output_hidden_states: Optional[bool] = None,
918
+ return_dict: Optional[bool] = None,
919
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
920
+
921
+ return_dict = (
922
+ return_dict if return_dict is not None else self.config.use_return_dict
923
+ )
924
+
925
+ transformer_outputs = self.transformer(
926
+ input_ids,
927
+ past_key_values=past_key_values,
928
+ attention_mask=attention_mask,
929
+ token_type_ids=token_type_ids,
930
+ position_ids=position_ids,
931
+ head_mask=head_mask,
932
+ inputs_embeds=inputs_embeds,
933
+ encoder_hidden_states=encoder_hidden_states,
934
+ encoder_attention_mask=encoder_attention_mask,
935
+ use_cache=use_cache,
936
+ output_attentions=output_attentions,
937
+ output_hidden_states=output_hidden_states,
938
+ return_dict=return_dict,
939
+ )
940
+ hidden_states = transformer_outputs[0]
941
+
942
+ lm_logits = self.lm_head(hidden_states)
943
+
944
+ loss = None
945
+ if labels is not None:
946
+ labels = labels.to(lm_logits.device)
947
+ shift_logits = lm_logits[..., :-1, :].contiguous()
948
+ shift_labels = labels[..., 1:].contiguous()
949
+ loss_fct = CrossEntropyLoss()
950
+ loss = loss_fct(
951
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
952
+ )
953
+
954
+ if not return_dict:
955
+ output = (lm_logits,) + transformer_outputs[1:]
956
+ return ((loss,) + output) if loss is not None else output
957
+
958
+ return CausalLMOutputWithPast(
959
+ loss=loss,
960
+ logits=lm_logits,
961
+ past_key_values=transformer_outputs.past_key_values,
962
+ hidden_states=transformer_outputs.hidden_states,
963
+ attentions=transformer_outputs.attentions,
964
+ )
965
+
966
+ @staticmethod
967
+ def _reorder_cache(
968
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
969
+ ) -> Tuple[Tuple[torch.Tensor]]:
970
+
971
+ return tuple(
972
+ tuple(
973
+ past_state.index_select(0, beam_idx.to(past_state.device))
974
+ for past_state in layer_past
975
+ )
976
+ for layer_past in past_key_values
977
+ )
978
+
979
+ def chat(
980
+ self,
981
+ tokenizer: PreTrainedTokenizer,
982
+ query: str,
983
+ history: Optional[HistoryType],
984
+ system: str = "You are a helpful assistant.",
985
+ append_history: bool = True,
986
+ stream: Optional[bool] = _SENTINEL,
987
+ stop_words_ids: Optional[List[List[int]]] = None,
988
+ **kwargs,
989
+ ) -> Tuple[str, HistoryType]:
990
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
991
+ assert self.generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
992
+ if history is None:
993
+ history = []
994
+ if stop_words_ids is None:
995
+ stop_words_ids = []
996
+
997
+ raw_text, context_tokens = make_context(
998
+ tokenizer,
999
+ query,
1000
+ history=history,
1001
+ system=system,
1002
+ max_window_size=6144,
1003
+ chat_format=self.generation_config.chat_format,
1004
+ )
1005
+
1006
+ stop_words_ids.extend(get_stop_words_ids(
1007
+ self.generation_config.chat_format, tokenizer
1008
+ ))
1009
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1010
+ outputs = self.generate(
1011
+ input_ids,
1012
+ stop_words_ids = stop_words_ids,
1013
+ return_dict_in_generate = False,
1014
+ **kwargs,
1015
+ )
1016
+
1017
+ response = decode_tokens(
1018
+ outputs[0],
1019
+ tokenizer,
1020
+ raw_text_len=len(raw_text),
1021
+ context_length=len(context_tokens),
1022
+ chat_format=self.generation_config.chat_format,
1023
+ verbose=False,
1024
+ errors='replace'
1025
+ )
1026
+
1027
+ if append_history:
1028
+ history.append((query, response))
1029
+
1030
+ return response, history
1031
+
1032
+ def chat_stream(
1033
+ self,
1034
+ tokenizer: PreTrainedTokenizer,
1035
+ query: str,
1036
+ history: Optional[HistoryType],
1037
+ system: str = "You are a helpful assistant.",
1038
+ stop_words_ids: Optional[List[List[int]]] = None,
1039
+ logits_processor: Optional[LogitsProcessorList] = None,
1040
+ **kwargs,
1041
+ ) -> Generator[str, Any, None]:
1042
+ assert self.generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1043
+ if history is None:
1044
+ history = []
1045
+ if stop_words_ids is None:
1046
+ stop_words_ids = []
1047
+
1048
+ raw_text, context_tokens = make_context(
1049
+ tokenizer,
1050
+ query,
1051
+ history=history,
1052
+ system=system,
1053
+ max_window_size=6144,
1054
+ chat_format=self.generation_config.chat_format,
1055
+ )
1056
+
1057
+ stop_words_ids.extend(get_stop_words_ids(
1058
+ self.generation_config.chat_format, tokenizer
1059
+ ))
1060
+ if stop_words_ids is not None:
1061
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1062
+ stop_words_ids=stop_words_ids,
1063
+ eos_token_id=self.generation_config.eos_token_id,
1064
+ )
1065
+ if logits_processor is None:
1066
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1067
+ else:
1068
+ logits_processor.append(stop_words_logits_processor)
1069
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1070
+
1071
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1072
+ self.__class__.generate_stream = NewGenerationMixin.generate
1073
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1074
+ stream_config = StreamGenerationConfig(**self.generation_config.to_dict(), do_stream=True)
1075
+ def stream_generator():
1076
+ outputs = []
1077
+ for token in self.generate_stream(
1078
+ input_ids,
1079
+ return_dict_in_generate=False,
1080
+ generation_config=stream_config,
1081
+ logits_processor=logits_processor,
1082
+ seed=-1,
1083
+ **kwargs):
1084
+ outputs.append(token.item())
1085
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1086
+
1087
+ return stream_generator()
1088
+
1089
+ def generate(
1090
+ self,
1091
+ inputs: Optional[torch.Tensor] = None,
1092
+ generation_config: Optional[GenerationConfig] = None,
1093
+ logits_processor: Optional[LogitsProcessorList] = None,
1094
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1095
+ prefix_allowed_tokens_fn: Optional[
1096
+ Callable[[int, torch.Tensor], List[int]]
1097
+ ] = None,
1098
+ synced_gpus: Optional[bool] = None,
1099
+ assistant_model: Optional["PreTrainedModel"] = None,
1100
+ streamer: Optional["BaseStreamer"] = None,
1101
+ **kwargs,
1102
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1103
+ # Process stop_words_ids.
1104
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1105
+ if stop_words_ids is None and generation_config is not None:
1106
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1107
+ if stop_words_ids is None:
1108
+ stop_words_ids = getattr(self.generation_config, "stop_words_ids", None)
1109
+
1110
+ if stop_words_ids is not None:
1111
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1112
+ stop_words_ids=stop_words_ids,
1113
+ eos_token_id=self.generation_config.eos_token_id,
1114
+ )
1115
+ if logits_processor is None:
1116
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1117
+ else:
1118
+ logits_processor.append(stop_words_logits_processor)
1119
+
1120
+ return super().generate(
1121
+ inputs,
1122
+ generation_config=generation_config,
1123
+ logits_processor=logits_processor,
1124
+ stopping_criteria=stopping_criteria,
1125
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1126
+ synced_gpus=synced_gpus,
1127
+ assistant_model=assistant_model,
1128
+ streamer=streamer,
1129
+ **kwargs,
1130
+ )
1131
+
1132
+
1133
+ class RotaryEmbedding(torch.nn.Module):
1134
+ def __init__(self, dim, base=10000):
1135
+ super().__init__()
1136
+ self.dim = dim
1137
+ self.base = base
1138
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1139
+ if importlib.util.find_spec("einops") is None:
1140
+ raise RuntimeError("einops is required for Rotary Embedding")
1141
+
1142
+ self._rotary_pos_emb_cache = None
1143
+ self._seq_len_cached = 0
1144
+ self._ntk_alpha_cached = 1.0
1145
+
1146
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1147
+ seqlen = max_seq_len + offset
1148
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1149
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1150
+ self.inv_freq = 1.0 / (
1151
+ base
1152
+ ** (
1153
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1154
+ / self.dim
1155
+ )
1156
+ )
1157
+ self._seq_len_cached = max(2 * seqlen, 16)
1158
+ self._ntk_alpha_cached = ntk_alpha
1159
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1160
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1161
+ emb = torch.cat((freqs, freqs), dim=-1)
1162
+ from einops import rearrange
1163
+
1164
+ self._rotary_pos_emb_cache = rearrange(emb, "n d -> 1 n 1 d")
1165
+
1166
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1167
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1168
+ return self._rotary_pos_emb_cache[:, offset : offset + max_seq_len]
1169
+
1170
+
1171
+ def _rotate_half(x):
1172
+ from einops import rearrange
1173
+
1174
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1175
+ x1, x2 = x.unbind(dim=-2)
1176
+ return torch.cat((-x2, x1), dim=-1)
1177
+
1178
+
1179
+ def apply_rotary_pos_emb(t, freqs):
1180
+ if apply_rotary_emb_func is not None:
1181
+ t_ = t.float()
1182
+ freqs = freqs.squeeze(0).squeeze(1)
1183
+ cos = freqs[:, : freqs.shape[-1] // 2].cos()
1184
+ sin = freqs[:, : freqs.shape[-1] // 2].sin()
1185
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1186
+ return output
1187
+ else:
1188
+ rot_dim = freqs.shape[-1]
1189
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1190
+ t_ = t_.float()
1191
+ t_pass_ = t_pass_.float()
1192
+ t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin())
1193
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1194
+
1195
+
1196
+ class RMSNorm(torch.nn.Module):
1197
+ def __init__(self, dim: int, eps: float = 1e-6):
1198
+ super().__init__()
1199
+ self.eps = eps
1200
+ self.weight = nn.Parameter(torch.ones(dim))
1201
+
1202
+ def _norm(self, x):
1203
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1204
+
1205
+ def forward(self, x):
1206
+ if rms_norm is not None and x.is_cuda:
1207
+ return rms_norm(x, self.weight, self.eps)
1208
+ else:
1209
+ output = self._norm(x.float()).type_as(x)
1210
+ return output * self.weight
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15442649088
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00008-of-00008.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00008.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00008.bin",
9
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00008.bin",
10
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00008.bin",
11
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00008.bin",
12
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00008.bin",
13
+ "transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00008.bin",
14
+ "transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00008.bin",
15
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00008.bin",
16
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00008.bin",
17
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00008.bin",
18
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00008.bin",
19
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00008.bin",
20
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
21
+ "transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00008.bin",
22
+ "transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00008.bin",
23
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
24
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
25
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
26
+ "transformer.h.10.ln_1.weight": "pytorch_model-00003-of-00008.bin",
27
+ "transformer.h.10.ln_2.weight": "pytorch_model-00003-of-00008.bin",
28
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
29
+ "transformer.h.10.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
30
+ "transformer.h.10.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
31
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
32
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
33
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
34
+ "transformer.h.11.ln_1.weight": "pytorch_model-00003-of-00008.bin",
35
+ "transformer.h.11.ln_2.weight": "pytorch_model-00003-of-00008.bin",
36
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
37
+ "transformer.h.11.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
38
+ "transformer.h.11.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
39
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
40
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
41
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
42
+ "transformer.h.12.ln_1.weight": "pytorch_model-00004-of-00008.bin",
43
+ "transformer.h.12.ln_2.weight": "pytorch_model-00004-of-00008.bin",
44
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
45
+ "transformer.h.12.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
46
+ "transformer.h.12.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
47
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
48
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
49
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
50
+ "transformer.h.13.ln_1.weight": "pytorch_model-00004-of-00008.bin",
51
+ "transformer.h.13.ln_2.weight": "pytorch_model-00004-of-00008.bin",
52
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
53
+ "transformer.h.13.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
54
+ "transformer.h.13.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
55
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
56
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
57
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
58
+ "transformer.h.14.ln_1.weight": "pytorch_model-00004-of-00008.bin",
59
+ "transformer.h.14.ln_2.weight": "pytorch_model-00004-of-00008.bin",
60
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
61
+ "transformer.h.14.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
62
+ "transformer.h.14.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
63
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
64
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
65
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
66
+ "transformer.h.15.ln_1.weight": "pytorch_model-00004-of-00008.bin",
67
+ "transformer.h.15.ln_2.weight": "pytorch_model-00004-of-00008.bin",
68
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
69
+ "transformer.h.15.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
70
+ "transformer.h.15.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
71
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
72
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
73
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
74
+ "transformer.h.16.ln_1.weight": "pytorch_model-00004-of-00008.bin",
75
+ "transformer.h.16.ln_2.weight": "pytorch_model-00005-of-00008.bin",
76
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
77
+ "transformer.h.16.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
78
+ "transformer.h.16.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
79
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
80
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
81
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
82
+ "transformer.h.17.ln_1.weight": "pytorch_model-00005-of-00008.bin",
83
+ "transformer.h.17.ln_2.weight": "pytorch_model-00005-of-00008.bin",
84
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
85
+ "transformer.h.17.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
86
+ "transformer.h.17.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
87
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
88
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
89
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
90
+ "transformer.h.18.ln_1.weight": "pytorch_model-00005-of-00008.bin",
91
+ "transformer.h.18.ln_2.weight": "pytorch_model-00005-of-00008.bin",
92
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
93
+ "transformer.h.18.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
94
+ "transformer.h.18.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
95
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
96
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
97
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
98
+ "transformer.h.19.ln_1.weight": "pytorch_model-00005-of-00008.bin",
99
+ "transformer.h.19.ln_2.weight": "pytorch_model-00005-of-00008.bin",
100
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
101
+ "transformer.h.19.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
102
+ "transformer.h.19.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
103
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
104
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
105
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
106
+ "transformer.h.2.ln_1.weight": "pytorch_model-00002-of-00008.bin",
107
+ "transformer.h.2.ln_2.weight": "pytorch_model-00002-of-00008.bin",
108
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
109
+ "transformer.h.2.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
110
+ "transformer.h.2.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
111
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
112
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
113
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
114
+ "transformer.h.20.ln_1.weight": "pytorch_model-00005-of-00008.bin",
115
+ "transformer.h.20.ln_2.weight": "pytorch_model-00005-of-00008.bin",
116
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
117
+ "transformer.h.20.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
118
+ "transformer.h.20.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
119
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
120
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
121
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
122
+ "transformer.h.21.ln_1.weight": "pytorch_model-00005-of-00008.bin",
123
+ "transformer.h.21.ln_2.weight": "pytorch_model-00006-of-00008.bin",
124
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
125
+ "transformer.h.21.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
126
+ "transformer.h.21.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
127
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
128
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
129
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
130
+ "transformer.h.22.ln_1.weight": "pytorch_model-00006-of-00008.bin",
131
+ "transformer.h.22.ln_2.weight": "pytorch_model-00006-of-00008.bin",
132
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
133
+ "transformer.h.22.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
134
+ "transformer.h.22.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
135
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
136
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
137
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
138
+ "transformer.h.23.ln_1.weight": "pytorch_model-00006-of-00008.bin",
139
+ "transformer.h.23.ln_2.weight": "pytorch_model-00006-of-00008.bin",
140
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
141
+ "transformer.h.23.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
142
+ "transformer.h.23.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
143
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
144
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
145
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
146
+ "transformer.h.24.ln_1.weight": "pytorch_model-00006-of-00008.bin",
147
+ "transformer.h.24.ln_2.weight": "pytorch_model-00006-of-00008.bin",
148
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
149
+ "transformer.h.24.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
150
+ "transformer.h.24.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
151
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
152
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
153
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
154
+ "transformer.h.25.ln_1.weight": "pytorch_model-00006-of-00008.bin",
155
+ "transformer.h.25.ln_2.weight": "pytorch_model-00006-of-00008.bin",
156
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
157
+ "transformer.h.25.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
158
+ "transformer.h.25.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
159
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
160
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
161
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
162
+ "transformer.h.26.ln_1.weight": "pytorch_model-00007-of-00008.bin",
163
+ "transformer.h.26.ln_2.weight": "pytorch_model-00007-of-00008.bin",
164
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
165
+ "transformer.h.26.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
166
+ "transformer.h.26.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
167
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
168
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
169
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
170
+ "transformer.h.27.ln_1.weight": "pytorch_model-00007-of-00008.bin",
171
+ "transformer.h.27.ln_2.weight": "pytorch_model-00007-of-00008.bin",
172
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
173
+ "transformer.h.27.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
174
+ "transformer.h.27.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
175
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
176
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
177
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
178
+ "transformer.h.28.ln_1.weight": "pytorch_model-00007-of-00008.bin",
179
+ "transformer.h.28.ln_2.weight": "pytorch_model-00007-of-00008.bin",
180
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
181
+ "transformer.h.28.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
182
+ "transformer.h.28.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
183
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
184
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
185
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
186
+ "transformer.h.29.ln_1.weight": "pytorch_model-00007-of-00008.bin",
187
+ "transformer.h.29.ln_2.weight": "pytorch_model-00007-of-00008.bin",
188
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
189
+ "transformer.h.29.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
190
+ "transformer.h.29.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
191
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
192
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
193
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
194
+ "transformer.h.3.ln_1.weight": "pytorch_model-00002-of-00008.bin",
195
+ "transformer.h.3.ln_2.weight": "pytorch_model-00002-of-00008.bin",
196
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
197
+ "transformer.h.3.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
198
+ "transformer.h.3.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
199
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
200
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
201
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
202
+ "transformer.h.30.ln_1.weight": "pytorch_model-00007-of-00008.bin",
203
+ "transformer.h.30.ln_2.weight": "pytorch_model-00007-of-00008.bin",
204
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00008-of-00008.bin",
205
+ "transformer.h.30.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
206
+ "transformer.h.30.mlp.w2.weight": "pytorch_model-00008-of-00008.bin",
207
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00008-of-00008.bin",
208
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00008-of-00008.bin",
209
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00008-of-00008.bin",
210
+ "transformer.h.31.ln_1.weight": "pytorch_model-00008-of-00008.bin",
211
+ "transformer.h.31.ln_2.weight": "pytorch_model-00008-of-00008.bin",
212
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00008-of-00008.bin",
213
+ "transformer.h.31.mlp.w1.weight": "pytorch_model-00008-of-00008.bin",
214
+ "transformer.h.31.mlp.w2.weight": "pytorch_model-00008-of-00008.bin",
215
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
216
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
217
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
218
+ "transformer.h.4.ln_1.weight": "pytorch_model-00002-of-00008.bin",
219
+ "transformer.h.4.ln_2.weight": "pytorch_model-00002-of-00008.bin",
220
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
221
+ "transformer.h.4.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
222
+ "transformer.h.4.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
223
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
224
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
225
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
226
+ "transformer.h.5.ln_1.weight": "pytorch_model-00002-of-00008.bin",
227
+ "transformer.h.5.ln_2.weight": "pytorch_model-00002-of-00008.bin",
228
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
229
+ "transformer.h.5.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
230
+ "transformer.h.5.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
231
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
232
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
233
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
234
+ "transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00008.bin",
235
+ "transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00008.bin",
236
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
237
+ "transformer.h.6.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
238
+ "transformer.h.6.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
239
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
240
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
241
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
242
+ "transformer.h.7.ln_1.weight": "pytorch_model-00003-of-00008.bin",
243
+ "transformer.h.7.ln_2.weight": "pytorch_model-00003-of-00008.bin",
244
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
245
+ "transformer.h.7.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
246
+ "transformer.h.7.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
247
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
248
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
249
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
250
+ "transformer.h.8.ln_1.weight": "pytorch_model-00003-of-00008.bin",
251
+ "transformer.h.8.ln_2.weight": "pytorch_model-00003-of-00008.bin",
252
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
253
+ "transformer.h.8.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
254
+ "transformer.h.8.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
255
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
256
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
257
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
258
+ "transformer.h.9.ln_1.weight": "pytorch_model-00003-of-00008.bin",
259
+ "transformer.h.9.ln_2.weight": "pytorch_model-00003-of-00008.bin",
260
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
261
+ "transformer.h.9.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
262
+ "transformer.h.9.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
263
+ "transformer.ln_f.weight": "pytorch_model-00008-of-00008.bin",
264
+ "transformer.wte.weight": "pytorch_model-00001-of-00008.bin"
265
+ }
266
+ }
quantize_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": -1,
4
+ "damp_percent": 0.01,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "model_name_or_path": null,
10
+ "model_file_base_name": null
11
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
tokenization_qwen.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ SPECIAL_TOKENS = (
31
+ ENDOFTEXT,
32
+ IMSTART,
33
+ IMEND,
34
+ ) + EXTRAS
35
+
36
+
37
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
38
+ with open(tiktoken_bpe_file, "rb") as f:
39
+ contents = f.read()
40
+ return {
41
+ base64.b64decode(token): int(rank)
42
+ for token, rank in (line.split() for line in contents.splitlines() if line)
43
+ }
44
+
45
+ class QWenTokenizer(PreTrainedTokenizer):
46
+ """QWen tokenizer."""
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+
50
+ def __init__(
51
+ self,
52
+ vocab_file,
53
+ errors="replace",
54
+ **kwargs,
55
+ ):
56
+ super().__init__(**kwargs)
57
+
58
+ self.errors = errors # how to handle errors in decoding
59
+
60
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
61
+ self.special_tokens = {
62
+ token: index
63
+ for index, token in enumerate(
64
+ SPECIAL_TOKENS, start=len(self.mergeable_ranks)
65
+ )
66
+ }
67
+
68
+ enc = tiktoken.Encoding(
69
+ "Qwen",
70
+ pat_str=PAT_STR,
71
+ mergeable_ranks=self.mergeable_ranks,
72
+ special_tokens=self.special_tokens,
73
+ )
74
+ assert (
75
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
76
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
77
+
78
+ self.decoder = {
79
+ v: k for k, v in self.mergeable_ranks.items()
80
+ } # type: dict[int, bytes|str]
81
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
82
+
83
+ self.tokenizer = enc # type: tiktoken.Encoding
84
+
85
+ self.eod_id = self.tokenizer.eot_token
86
+ self.im_start_id = self.special_tokens[IMSTART]
87
+ self.im_end_id = self.special_tokens[IMEND]
88
+
89
+ def __len__(self) -> int:
90
+ return self.tokenizer.n_vocab
91
+
92
+ def get_vocab(self) -> Dict[bytes, int]:
93
+ return self.mergeable_ranks
94
+
95
+ def convert_tokens_to_ids(
96
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
97
+ ) -> List[int]:
98
+ ids = []
99
+ if isinstance(tokens, (str, bytes)):
100
+ if tokens in self.special_tokens:
101
+ return self.special_tokens[tokens]
102
+ else:
103
+ return self.mergeable_ranks.get(tokens)
104
+ for token in tokens:
105
+ if token in self.special_tokens:
106
+ ids.append(self.special_tokens[token])
107
+ else:
108
+ ids.append(self.mergeable_ranks.get(token))
109
+ return ids
110
+
111
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
112
+ if not special_tokens and new_tokens:
113
+ raise ValueError('Adding regular tokens is not supported')
114
+ for token in new_tokens:
115
+ surface_form = token.content if isinstance(token, AddedToken) else token
116
+ if surface_form not in SPECIAL_TOKENS:
117
+ raise ValueError('Adding unknown special tokens is not supported')
118
+ return 0
119
+
120
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
121
+ """
122
+ Save only the vocabulary of the tokenizer (vocabulary).
123
+
124
+ Returns:
125
+ `Tuple(str)`: Paths to the files saved.
126
+ """
127
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
128
+ with open(file_path, "w", encoding="utf8") as w:
129
+ for k, v in self.mergeable_ranks.items():
130
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
131
+ w.write(line)
132
+ return (file_path,)
133
+
134
+ def tokenize(
135
+ self,
136
+ text: str,
137
+ allowed_special: Union[Set, str] = "all",
138
+ disallowed_special: Union[Collection, str] = (),
139
+ **kwargs,
140
+ ) -> List[Union[bytes, str]]:
141
+ """
142
+ Converts a string in a sequence of tokens.
143
+
144
+ Args:
145
+ text (`str`):
146
+ The sequence to be encoded.
147
+ allowed_special (`Literal["all"]` or `set`):
148
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
149
+ Default to "all".
150
+ disallowed_special (`Literal["all"]` or `Collection`):
151
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
152
+ Default to an empty tuple.
153
+
154
+ kwargs (additional keyword arguments, *optional*):
155
+ Will be passed to the underlying model specific encode method.
156
+
157
+ Returns:
158
+ `List[bytes|str]`: The list of tokens.
159
+ """
160
+ tokens = []
161
+ text = unicodedata.normalize("NFC", text)
162
+
163
+ # this implementation takes a detour: text -> token id -> token surface forms
164
+ for t in self.tokenizer.encode(
165
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
166
+ ):
167
+ tokens.append(self.decoder[t])
168
+ return tokens
169
+
170
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
171
+ """
172
+ Converts a sequence of tokens in a single string.
173
+ """
174
+ text = ""
175
+ temp = b""
176
+ for t in tokens:
177
+ if isinstance(t, str):
178
+ if temp:
179
+ text += temp.decode("utf-8", errors=self.errors)
180
+ temp = b""
181
+ text += t
182
+ elif isinstance(t, bytes):
183
+ temp += t
184
+ else:
185
+ raise TypeError("token should only be of type types or str")
186
+ if temp:
187
+ text += temp.decode("utf-8", errors=self.errors)
188
+ return text
189
+
190
+ @property
191
+ def vocab_size(self):
192
+ return self.tokenizer.n_vocab
193
+
194
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
195
+ """Converts an id to a token, special tokens included"""
196
+ if index in self.decoder:
197
+ return self.decoder[index]
198
+ raise ValueError("unknown ids")
199
+
200
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
201
+ """Converts a token to an id using the vocab, special tokens included"""
202
+ if token in self.special_tokens:
203
+ return self.special_tokens[token]
204
+ if token in self.mergeable_ranks:
205
+ return self.mergeable_ranks[token]
206
+ raise ValueError("unknown token")
207
+
208
+ def _tokenize(self, text: str, **kwargs):
209
+ """
210
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
211
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
212
+
213
+ Do NOT take care of added tokens.
214
+ """
215
+ raise NotImplementedError
216
+
217
+ def _decode(
218
+ self,
219
+ token_ids: Union[int, List[int]],
220
+ skip_special_tokens: bool = False,
221
+ errors: str = None,
222
+ **kwargs,
223
+ ) -> str:
224
+ if isinstance(token_ids, int):
225
+ token_ids = [token_ids]
226
+ if skip_special_tokens:
227
+ token_ids = [i for i in token_ids if i < self.eod_id]
228
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_max_length": 8192,
3
+ "tokenizer_class": "QWenTokenizer",
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_qwen.QWenTokenizer",
7
+ null
8
+ ]
9
+ }
10
+ }