TomPei commited on
Commit
da91231
·
verified ·
1 Parent(s): 0577a90

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32016
3
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 16384,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.36.2",
25
+ "use_cache": false,
26
+ "vocab_size": 32017
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
humanEval/python_pass1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.5}
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1731afab8ea6ed435f9f794b537891ed335cfddee5da73abc77aa9a99c038862
3
+ size 4939124616
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e2e37e288956ea8ae0835046ddc725fff0ade54d3b45cbef8f4ce74c8a61337
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57e0e5c5cbb9b34170603d6953c34e4855641e2df2fd8b44c206409e0f253977
3
+ size 3590628080
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13477109760
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "[PAD]",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
tokenizer_config.json ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32016": {
62
+ "content": "[PAD]",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ }
69
+ },
70
+ "additional_special_tokens": [
71
+ "▁<PRE>",
72
+ "▁<MID>",
73
+ "▁<SUF>",
74
+ "▁<EOT>"
75
+ ],
76
+ "bos_token": "<s>",
77
+ "clean_up_tokenization_spaces": false,
78
+ "eos_token": "</s>",
79
+ "eot_token": "▁<EOT>",
80
+ "fill_token": "<FILL_ME>",
81
+ "legacy": null,
82
+ "middle_token": "▁<MID>",
83
+ "model_max_length": 16384,
84
+ "pad_token": "[PAD]",
85
+ "padding_side": "left",
86
+ "prefix_token": "▁<PRE>",
87
+ "sp_model_kwargs": {},
88
+ "suffix_token": "▁<SUF>",
89
+ "tokenizer_class": "CodeLlamaTokenizer",
90
+ "unk_token": "<unk>",
91
+ "use_default_system_prompt": false
92
+ }
trainer_state.json ADDED
@@ -0,0 +1,1221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.3071895424836601,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 0.0,
14
+ "loss": 0.5341,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4.075900941810124e-06,
20
+ "loss": 0.4805,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 6.46015014942309e-06,
26
+ "loss": 0.4839,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 8.151801883620247e-06,
32
+ "loss": 0.4227,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 9.463948908766788e-06,
38
+ "loss": 0.4289,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.0536051091233212e-05,
44
+ "loss": 0.3633,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "learning_rate": 1.1442500570809876e-05,
50
+ "loss": 0.3749,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.222770282543037e-05,
56
+ "loss": 0.3379,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.292030029884618e-05,
62
+ "loss": 0.3637,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.07,
67
+ "learning_rate": 1.3539849850576912e-05,
68
+ "loss": 0.3716,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.4100300592531481e-05,
74
+ "loss": 0.3544,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.4611952033043337e-05,
80
+ "loss": 0.3463,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.5082625732282867e-05,
86
+ "loss": 0.3121,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.551840151262e-05,
92
+ "loss": 0.3364,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.5924099058189875e-05,
98
+ "loss": 0.3259,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.6303603767240495e-05,
104
+ "loss": 0.3348,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.6660093644266146e-05,
110
+ "loss": 0.3125,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.12,
115
+ "learning_rate": 1.6996201240656302e-05,
116
+ "loss": 0.3377,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.7314131752785847e-05,
122
+ "loss": 0.3086,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.7615750792387035e-05,
128
+ "loss": 0.3012,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.14,
133
+ "learning_rate": 1.7902650720232966e-05,
134
+ "loss": 0.3212,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.8176201534341607e-05,
140
+ "loss": 0.3179,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.8437590437029225e-05,
146
+ "loss": 0.3196,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.16,
151
+ "learning_rate": 1.868785297485346e-05,
152
+ "loss": 0.3175,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.8927897817533575e-05,
158
+ "loss": 0.3312,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.915852667409299e-05,
164
+ "loss": 0.2915,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.18,
169
+ "learning_rate": 1.9380450448269272e-05,
170
+ "loss": 0.3208,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.9594302454430122e-05,
176
+ "loss": 0.2906,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.19,
181
+ "learning_rate": 1.9800649313336155e-05,
182
+ "loss": 0.2998,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.2,
187
+ "learning_rate": 2e-05,
188
+ "loss": 0.3057,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 2e-05,
194
+ "loss": 0.2943,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.21,
199
+ "learning_rate": 2e-05,
200
+ "loss": 0.3099,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.22,
205
+ "learning_rate": 2e-05,
206
+ "loss": 0.2935,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 2e-05,
212
+ "loss": 0.2903,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.23,
217
+ "learning_rate": 2e-05,
218
+ "loss": 0.2782,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.24,
223
+ "learning_rate": 2e-05,
224
+ "loss": 0.3099,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 2e-05,
230
+ "loss": 0.2966,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.25,
235
+ "learning_rate": 2e-05,
236
+ "loss": 0.2939,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 2e-05,
242
+ "loss": 0.2949,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.26,
247
+ "learning_rate": 2e-05,
248
+ "loss": 0.2842,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.27,
253
+ "learning_rate": 2e-05,
254
+ "loss": 0.279,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 2e-05,
260
+ "loss": 0.3078,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.28,
265
+ "learning_rate": 2e-05,
266
+ "loss": 0.3019,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.29,
271
+ "learning_rate": 2e-05,
272
+ "loss": 0.3208,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 2e-05,
278
+ "loss": 0.312,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.3,
283
+ "learning_rate": 2e-05,
284
+ "loss": 0.2994,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.31,
289
+ "learning_rate": 2e-05,
290
+ "loss": 0.3032,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 2e-05,
296
+ "loss": 0.3176,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.32,
301
+ "learning_rate": 2e-05,
302
+ "loss": 0.3116,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.33,
307
+ "learning_rate": 2e-05,
308
+ "loss": 0.3035,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.33,
313
+ "learning_rate": 2e-05,
314
+ "loss": 0.3081,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.34,
319
+ "learning_rate": 2e-05,
320
+ "loss": 0.2975,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.35,
325
+ "learning_rate": 2e-05,
326
+ "loss": 0.2893,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.35,
331
+ "learning_rate": 2e-05,
332
+ "loss": 0.2919,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.36,
337
+ "learning_rate": 2e-05,
338
+ "loss": 0.2922,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.37,
343
+ "learning_rate": 2e-05,
344
+ "loss": 0.3126,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.37,
349
+ "learning_rate": 2e-05,
350
+ "loss": 0.2758,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.38,
355
+ "learning_rate": 2e-05,
356
+ "loss": 0.2856,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.39,
361
+ "learning_rate": 2e-05,
362
+ "loss": 0.2936,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.39,
367
+ "learning_rate": 2e-05,
368
+ "loss": 0.2778,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.4,
373
+ "learning_rate": 2e-05,
374
+ "loss": 0.2777,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.41,
379
+ "learning_rate": 2e-05,
380
+ "loss": 0.2757,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.41,
385
+ "learning_rate": 2e-05,
386
+ "loss": 0.2961,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.42,
391
+ "learning_rate": 2e-05,
392
+ "loss": 0.2864,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.42,
397
+ "learning_rate": 2e-05,
398
+ "loss": 0.2746,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.43,
403
+ "learning_rate": 2e-05,
404
+ "loss": 0.2824,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.44,
409
+ "learning_rate": 2e-05,
410
+ "loss": 0.2719,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.44,
415
+ "learning_rate": 2e-05,
416
+ "loss": 0.2786,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.45,
421
+ "learning_rate": 2e-05,
422
+ "loss": 0.2739,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.46,
427
+ "learning_rate": 2e-05,
428
+ "loss": 0.2846,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.46,
433
+ "learning_rate": 2e-05,
434
+ "loss": 0.2762,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.47,
439
+ "learning_rate": 2e-05,
440
+ "loss": 0.2834,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.48,
445
+ "learning_rate": 2e-05,
446
+ "loss": 0.2827,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.48,
451
+ "learning_rate": 2e-05,
452
+ "loss": 0.2697,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.49,
457
+ "learning_rate": 2e-05,
458
+ "loss": 0.2873,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.5,
463
+ "learning_rate": 2e-05,
464
+ "loss": 0.2596,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.5,
469
+ "learning_rate": 2e-05,
470
+ "loss": 0.2791,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.51,
475
+ "learning_rate": 2e-05,
476
+ "loss": 0.2683,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.52,
481
+ "learning_rate": 2e-05,
482
+ "loss": 0.2771,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.52,
487
+ "learning_rate": 2e-05,
488
+ "loss": 0.2836,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.53,
493
+ "learning_rate": 2e-05,
494
+ "loss": 0.2656,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.54,
499
+ "learning_rate": 2e-05,
500
+ "loss": 0.2832,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.54,
505
+ "learning_rate": 2e-05,
506
+ "loss": 0.2572,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.55,
511
+ "learning_rate": 2e-05,
512
+ "loss": 0.2691,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.56,
517
+ "learning_rate": 2e-05,
518
+ "loss": 0.2811,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.56,
523
+ "learning_rate": 2e-05,
524
+ "loss": 0.2757,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.57,
529
+ "learning_rate": 2e-05,
530
+ "loss": 0.2752,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.58,
535
+ "learning_rate": 2e-05,
536
+ "loss": 0.275,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.58,
541
+ "learning_rate": 2e-05,
542
+ "loss": 0.2871,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.59,
547
+ "learning_rate": 2e-05,
548
+ "loss": 0.2601,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.59,
553
+ "learning_rate": 2e-05,
554
+ "loss": 0.2832,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.6,
559
+ "learning_rate": 2e-05,
560
+ "loss": 0.2717,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.61,
565
+ "learning_rate": 2e-05,
566
+ "loss": 0.2845,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.61,
571
+ "learning_rate": 2e-05,
572
+ "loss": 0.2825,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.62,
577
+ "learning_rate": 2e-05,
578
+ "loss": 0.2886,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.63,
583
+ "learning_rate": 2e-05,
584
+ "loss": 0.2713,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.63,
589
+ "learning_rate": 2e-05,
590
+ "loss": 0.2771,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.64,
595
+ "learning_rate": 2e-05,
596
+ "loss": 0.2577,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.65,
601
+ "learning_rate": 2e-05,
602
+ "loss": 0.2648,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.65,
607
+ "learning_rate": 2e-05,
608
+ "loss": 0.2794,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.66,
613
+ "learning_rate": 2e-05,
614
+ "loss": 0.2868,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.67,
619
+ "learning_rate": 2e-05,
620
+ "loss": 0.2822,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.67,
625
+ "learning_rate": 2e-05,
626
+ "loss": 0.2802,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.68,
631
+ "learning_rate": 2e-05,
632
+ "loss": 0.2764,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.69,
637
+ "learning_rate": 2e-05,
638
+ "loss": 0.2716,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.69,
643
+ "learning_rate": 2e-05,
644
+ "loss": 0.2679,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.7,
649
+ "learning_rate": 2e-05,
650
+ "loss": 0.2825,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.71,
655
+ "learning_rate": 2e-05,
656
+ "loss": 0.2852,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.71,
661
+ "learning_rate": 2e-05,
662
+ "loss": 0.277,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.72,
667
+ "learning_rate": 2e-05,
668
+ "loss": 0.2666,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.73,
673
+ "learning_rate": 2e-05,
674
+ "loss": 0.2815,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.73,
679
+ "learning_rate": 2e-05,
680
+ "loss": 0.2722,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.74,
685
+ "learning_rate": 2e-05,
686
+ "loss": 0.2648,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.75,
691
+ "learning_rate": 2e-05,
692
+ "loss": 0.2826,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.75,
697
+ "learning_rate": 2e-05,
698
+ "loss": 0.2667,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.76,
703
+ "learning_rate": 2e-05,
704
+ "loss": 0.2724,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.76,
709
+ "learning_rate": 2e-05,
710
+ "loss": 0.2757,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.77,
715
+ "learning_rate": 2e-05,
716
+ "loss": 0.2748,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.78,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.2708,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.78,
727
+ "learning_rate": 2e-05,
728
+ "loss": 0.2774,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.79,
733
+ "learning_rate": 2e-05,
734
+ "loss": 0.2737,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.8,
739
+ "learning_rate": 2e-05,
740
+ "loss": 0.2603,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.8,
745
+ "learning_rate": 2e-05,
746
+ "loss": 0.2792,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.81,
751
+ "learning_rate": 2e-05,
752
+ "loss": 0.2788,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.82,
757
+ "learning_rate": 2e-05,
758
+ "loss": 0.2803,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.82,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.2862,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.83,
769
+ "learning_rate": 2e-05,
770
+ "loss": 0.2892,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.84,
775
+ "learning_rate": 2e-05,
776
+ "loss": 0.2794,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.84,
781
+ "learning_rate": 2e-05,
782
+ "loss": 0.2721,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.85,
787
+ "learning_rate": 2e-05,
788
+ "loss": 0.2714,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.86,
793
+ "learning_rate": 2e-05,
794
+ "loss": 0.2693,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.86,
799
+ "learning_rate": 2e-05,
800
+ "loss": 0.2851,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.87,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.2804,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.88,
811
+ "learning_rate": 2e-05,
812
+ "loss": 0.2772,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.88,
817
+ "learning_rate": 2e-05,
818
+ "loss": 0.271,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.89,
823
+ "learning_rate": 2e-05,
824
+ "loss": 0.2752,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.9,
829
+ "learning_rate": 2e-05,
830
+ "loss": 0.2527,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.9,
835
+ "learning_rate": 2e-05,
836
+ "loss": 0.2707,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.91,
841
+ "learning_rate": 2e-05,
842
+ "loss": 0.2579,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.92,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.2707,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.92,
853
+ "learning_rate": 2e-05,
854
+ "loss": 0.2584,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.93,
859
+ "learning_rate": 2e-05,
860
+ "loss": 0.2652,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.93,
865
+ "learning_rate": 2e-05,
866
+ "loss": 0.269,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.94,
871
+ "learning_rate": 2e-05,
872
+ "loss": 0.2666,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.95,
877
+ "learning_rate": 2e-05,
878
+ "loss": 0.2685,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.95,
883
+ "learning_rate": 2e-05,
884
+ "loss": 0.2818,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.96,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.2583,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.97,
895
+ "learning_rate": 2e-05,
896
+ "loss": 0.2834,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.97,
901
+ "learning_rate": 2e-05,
902
+ "loss": 0.2691,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.98,
907
+ "learning_rate": 2e-05,
908
+ "loss": 0.2617,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.99,
913
+ "learning_rate": 2e-05,
914
+ "loss": 0.2772,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.99,
919
+ "learning_rate": 2e-05,
920
+ "loss": 0.2785,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 1.0,
925
+ "learning_rate": 2e-05,
926
+ "loss": 0.2714,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 1.01,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.215,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 1.01,
937
+ "learning_rate": 2e-05,
938
+ "loss": 0.2257,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 1.02,
943
+ "learning_rate": 2e-05,
944
+ "loss": 0.2122,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.03,
949
+ "learning_rate": 2e-05,
950
+ "loss": 0.2267,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.03,
955
+ "learning_rate": 2e-05,
956
+ "loss": 0.2159,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.04,
961
+ "learning_rate": 2e-05,
962
+ "loss": 0.2114,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.05,
967
+ "learning_rate": 2e-05,
968
+ "loss": 0.2124,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.05,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.2085,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.06,
979
+ "learning_rate": 2e-05,
980
+ "loss": 0.221,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.07,
985
+ "learning_rate": 2e-05,
986
+ "loss": 0.2177,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.07,
991
+ "learning_rate": 2e-05,
992
+ "loss": 0.2226,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.08,
997
+ "learning_rate": 2e-05,
998
+ "loss": 0.2198,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.08,
1003
+ "learning_rate": 2e-05,
1004
+ "loss": 0.2179,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.09,
1009
+ "learning_rate": 2e-05,
1010
+ "loss": 0.215,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.1,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.2223,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.1,
1021
+ "learning_rate": 2e-05,
1022
+ "loss": 0.2168,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.11,
1027
+ "learning_rate": 2e-05,
1028
+ "loss": 0.2081,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.12,
1033
+ "learning_rate": 2e-05,
1034
+ "loss": 0.2101,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.12,
1039
+ "learning_rate": 2e-05,
1040
+ "loss": 0.2091,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.13,
1045
+ "learning_rate": 2e-05,
1046
+ "loss": 0.2459,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.14,
1051
+ "learning_rate": 2e-05,
1052
+ "loss": 0.2135,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.14,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.2182,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.15,
1063
+ "learning_rate": 2e-05,
1064
+ "loss": 0.2165,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.16,
1069
+ "learning_rate": 2e-05,
1070
+ "loss": 0.2239,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.16,
1075
+ "learning_rate": 2e-05,
1076
+ "loss": 0.2184,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.17,
1081
+ "learning_rate": 2e-05,
1082
+ "loss": 0.2272,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.18,
1087
+ "learning_rate": 2e-05,
1088
+ "loss": 0.2066,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.18,
1093
+ "learning_rate": 2e-05,
1094
+ "loss": 0.2123,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.19,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.2059,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.2,
1105
+ "learning_rate": 2e-05,
1106
+ "loss": 0.2192,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.2,
1111
+ "learning_rate": 2e-05,
1112
+ "loss": 0.2102,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.21,
1117
+ "learning_rate": 2e-05,
1118
+ "loss": 0.2192,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.22,
1123
+ "learning_rate": 2e-05,
1124
+ "loss": 0.2156,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.22,
1129
+ "learning_rate": 2e-05,
1130
+ "loss": 0.22,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.23,
1135
+ "learning_rate": 2e-05,
1136
+ "loss": 0.2154,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.24,
1141
+ "learning_rate": 2e-05,
1142
+ "loss": 0.2045,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.24,
1147
+ "learning_rate": 2e-05,
1148
+ "loss": 0.2153,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.25,
1153
+ "learning_rate": 2e-05,
1154
+ "loss": 0.2242,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.25,
1159
+ "learning_rate": 2e-05,
1160
+ "loss": 0.2119,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.26,
1165
+ "learning_rate": 2e-05,
1166
+ "loss": 0.2163,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.27,
1171
+ "learning_rate": 2e-05,
1172
+ "loss": 0.2172,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.27,
1177
+ "learning_rate": 2e-05,
1178
+ "loss": 0.2002,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.28,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.2138,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.29,
1189
+ "learning_rate": 2e-05,
1190
+ "loss": 0.2247,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.29,
1195
+ "learning_rate": 2e-05,
1196
+ "loss": 0.2208,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.3,
1201
+ "learning_rate": 2e-05,
1202
+ "loss": 0.2188,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.31,
1207
+ "learning_rate": 2e-05,
1208
+ "loss": 0.2129,
1209
+ "step": 200
1210
+ }
1211
+ ],
1212
+ "logging_steps": 1.0,
1213
+ "max_steps": 306,
1214
+ "num_input_tokens_seen": 0,
1215
+ "num_train_epochs": 2,
1216
+ "save_steps": 100,
1217
+ "total_flos": 5.340257905864081e+18,
1218
+ "train_batch_size": 16,
1219
+ "trial_name": null,
1220
+ "trial_params": null
1221
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bd8488dd1d58cf8bd8ba1626e6b5b436bc0570640401f80a41aa1bc9e265d6a
3
+ size 6200
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)