Upload folder using huggingface_hub
Browse files- README.md +6 -9
- config.json +19 -7
- data_config.yaml +19 -2
- pytorch_model.bin +2 -2
README.md
CHANGED
@@ -9,12 +9,13 @@ library_name: pytorch
|
|
9 |
|
10 |
|
11 |
|
12 |
-
#
|
13 |
|
14 |
## Model Description
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is/does. -->
|
17 |
-
This model class uses
|
|
|
18 |
|
19 |
- **Developed by:** openclimatefix
|
20 |
- **Model type:** Fusion model
|
@@ -28,23 +29,19 @@ This model class uses satellite data, numericl weather predictions, and recent G
|
|
28 |
|
29 |
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
30 |
|
31 |
-
The model is trained on data from 2019-2022 and validated on data from 2022-2023. See experimental notes
|
32 |
|
33 |
|
34 |
### Preprocessing
|
35 |
|
36 |
-
Data is prepared with the `ocf_datapipes.training.
|
37 |
|
38 |
|
39 |
## Results
|
40 |
|
41 |
The training logs for the current model can be found here:
|
42 |
-
- [https://wandb.ai/openclimatefix/
|
43 |
-
|
44 |
-
|
45 |
-
The training logs for all model runs of PVNet2 can be found [here](https://wandb.ai/openclimatefix/pvnet2.1).
|
46 |
|
47 |
-
Some experimental notes can be found at in [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing)
|
48 |
|
49 |
|
50 |
### Hardware
|
|
|
9 |
|
10 |
|
11 |
|
12 |
+
# WindNet
|
13 |
|
14 |
## Model Description
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is/does. -->
|
17 |
+
This model class uses numerical weather predictions from providers such as ECMWF to forecast the wind power in North West India over the next 48 hours at 15 minute granularity. More information can be found in the model repo [1] and experimental notes [here](https://github.com/openclimatefix/PVNet/tree/main/experiments/india).
|
18 |
+
|
19 |
|
20 |
- **Developed by:** openclimatefix
|
21 |
- **Model type:** Fusion model
|
|
|
29 |
|
30 |
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
31 |
|
32 |
+
The model is trained on data from 2019-2022 and validated on data from 2022-2023. See experimental notes [here](https://github.com/openclimatefix/PVNet/tree/main/experiments/india)
|
33 |
|
34 |
|
35 |
### Preprocessing
|
36 |
|
37 |
+
Data is prepared with the `ocf_datapipes.training.windnet` datapipe [2].
|
38 |
|
39 |
|
40 |
## Results
|
41 |
|
42 |
The training logs for the current model can be found here:
|
43 |
+
- [https://wandb.ai/openclimatefix/wind_mo_global/runs/21t9xqfn](https://wandb.ai/openclimatefix/wind_mo_global/runs/21t9xqfn)
|
|
|
|
|
|
|
44 |
|
|
|
45 |
|
46 |
|
47 |
### Hardware
|
config.json
CHANGED
@@ -25,6 +25,15 @@
|
|
25 |
"n_res_blocks": 3,
|
26 |
"hidden_channels": 256,
|
27 |
"image_size_pixels": 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
}
|
29 |
},
|
30 |
"wind_encoder": {
|
@@ -46,21 +55,23 @@
|
|
46 |
},
|
47 |
"embedding_dim": 16,
|
48 |
"include_sun": false,
|
49 |
-
"include_time": true,
|
50 |
"include_gsp_yield_history": false,
|
51 |
"forecast_minutes": 2880,
|
52 |
"history_minutes": 60,
|
53 |
"nwp_history_minutes": {
|
54 |
"ecmwf": 60,
|
55 |
-
"gfs": 0
|
|
|
56 |
},
|
57 |
"nwp_forecast_minutes": {
|
58 |
"ecmwf": 2880,
|
59 |
-
"gfs":
|
|
|
60 |
},
|
61 |
"nwp_interval_minutes": {
|
62 |
"ecmwf": 60,
|
63 |
-
"gfs": 180
|
|
|
64 |
},
|
65 |
"wind_history_minutes": 60,
|
66 |
"wind_interval_minutes": 15,
|
@@ -70,8 +81,9 @@
|
|
70 |
"lr": 0.0001,
|
71 |
"weight_decay": 0.25,
|
72 |
"amsgrad": true,
|
73 |
-
"patience":
|
74 |
-
"factor": 0.
|
75 |
"threshold": 0.002
|
76 |
-
}
|
|
|
77 |
}
|
|
|
25 |
"n_res_blocks": 3,
|
26 |
"hidden_channels": 256,
|
27 |
"image_size_pixels": 10
|
28 |
+
},
|
29 |
+
"mo_global": {
|
30 |
+
"_target_": "pvnet.models.multimodal.encoders.encoders3d.ResConv3DNet2",
|
31 |
+
"_partial_": true,
|
32 |
+
"in_channels": 3,
|
33 |
+
"out_features": 256,
|
34 |
+
"n_res_blocks": 5,
|
35 |
+
"hidden_channels": 256,
|
36 |
+
"image_size_pixels": 50
|
37 |
}
|
38 |
},
|
39 |
"wind_encoder": {
|
|
|
55 |
},
|
56 |
"embedding_dim": 16,
|
57 |
"include_sun": false,
|
|
|
58 |
"include_gsp_yield_history": false,
|
59 |
"forecast_minutes": 2880,
|
60 |
"history_minutes": 60,
|
61 |
"nwp_history_minutes": {
|
62 |
"ecmwf": 60,
|
63 |
+
"gfs": 0,
|
64 |
+
"mo_global": 60
|
65 |
},
|
66 |
"nwp_forecast_minutes": {
|
67 |
"ecmwf": 2880,
|
68 |
+
"gfs": 2220,
|
69 |
+
"mo_global": 1860
|
70 |
},
|
71 |
"nwp_interval_minutes": {
|
72 |
"ecmwf": 60,
|
73 |
+
"gfs": 180,
|
74 |
+
"mo_global": 60
|
75 |
},
|
76 |
"wind_history_minutes": 60,
|
77 |
"wind_interval_minutes": 15,
|
|
|
81 |
"lr": 0.0001,
|
82 |
"weight_decay": 0.25,
|
83 |
"amsgrad": true,
|
84 |
+
"patience": 5,
|
85 |
+
"factor": 0.1,
|
86 |
"threshold": 0.002
|
87 |
+
},
|
88 |
+
"adapt_batches": true
|
89 |
}
|
data_config.yaml
CHANGED
@@ -12,6 +12,7 @@ input_data:
|
|
12 |
- -360
|
13 |
forecast_minutes: 2880.0
|
14 |
history_minutes: 60
|
|
|
15 |
nwp_channels:
|
16 |
- t2m
|
17 |
- prate
|
@@ -21,8 +22,8 @@ input_data:
|
|
21 |
- v100
|
22 |
- u200
|
23 |
- v200
|
24 |
-
nwp_image_size_pixels_height:
|
25 |
-
nwp_image_size_pixels_width:
|
26 |
nwp_provider: ecmwf
|
27 |
nwp_zarr_path: PLACEHOLDER.zarr
|
28 |
time_resolution_minutes: 60
|
@@ -44,6 +45,22 @@ input_data:
|
|
44 |
nwp_provider: gfs
|
45 |
nwp_zarr_path: PLACEHOLDER.zarr
|
46 |
time_resolution_minutes: 180
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
wind:
|
48 |
n_wind_systems_per_example: 1
|
49 |
time_resolution_minutes: 15
|
|
|
12 |
- -360
|
13 |
forecast_minutes: 2880.0
|
14 |
history_minutes: 60
|
15 |
+
max_staleness_minutes: null
|
16 |
nwp_channels:
|
17 |
- t2m
|
18 |
- prate
|
|
|
22 |
- v100
|
23 |
- u200
|
24 |
- v200
|
25 |
+
nwp_image_size_pixels_height: 42
|
26 |
+
nwp_image_size_pixels_width: 42
|
27 |
nwp_provider: ecmwf
|
28 |
nwp_zarr_path: PLACEHOLDER.zarr
|
29 |
time_resolution_minutes: 60
|
|
|
45 |
nwp_provider: gfs
|
46 |
nwp_zarr_path: PLACEHOLDER.zarr
|
47 |
time_resolution_minutes: 180
|
48 |
+
mo_global:
|
49 |
+
dropout_fraction: 1.0
|
50 |
+
dropout_timedeltas_minutes:
|
51 |
+
- -180
|
52 |
+
forecast_minutes: 1860.0
|
53 |
+
history_minutes: 60
|
54 |
+
max_staleness_minutes: null
|
55 |
+
nwp_channels:
|
56 |
+
- temperature_sl
|
57 |
+
- wind_u_component_10m
|
58 |
+
- wind_v_component_10m
|
59 |
+
nwp_image_size_pixels_height: 50
|
60 |
+
nwp_image_size_pixels_width: 50
|
61 |
+
nwp_provider: mo_global
|
62 |
+
nwp_zarr_path: PLACEHOLDER.zarr
|
63 |
+
time_resolution_minutes: 60
|
64 |
wind:
|
65 |
n_wind_systems_per_example: 1
|
66 |
time_resolution_minutes: 15
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06081decbb9a54acc2b0e5e4fceb12b2bc578f5a6956a279ee2b58906cbea3f8
|
3 |
+
size 237767722
|