Sukhil-Patel commited on
Commit
546bade
·
verified ·
1 Parent(s): ae07c15

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +6 -9
  2. config.json +19 -7
  3. data_config.yaml +19 -2
  4. pytorch_model.bin +2 -2
README.md CHANGED
@@ -9,12 +9,13 @@ library_name: pytorch
9
 
10
 
11
 
12
- # PVNet2
13
 
14
  ## Model Description
15
 
16
  <!-- Provide a longer summary of what this model is/does. -->
17
- This model class uses satellite data, numericl weather predictions, and recent Grid Service Point( GSP) PV power output to forecast the near-term (~8 hours) PV power output at all GSPs. More information can be found in the model repo [1] and experimental notes in [this google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing).
 
18
 
19
  - **Developed by:** openclimatefix
20
  - **Model type:** Fusion model
@@ -28,23 +29,19 @@ This model class uses satellite data, numericl weather predictions, and recent G
28
 
29
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
30
 
31
- The model is trained on data from 2019-2022 and validated on data from 2022-2023. See experimental notes in the [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing) for more details.
32
 
33
 
34
  ### Preprocessing
35
 
36
- Data is prepared with the `ocf_datapipes.training.pvnet` datapipe [2].
37
 
38
 
39
  ## Results
40
 
41
  The training logs for the current model can be found here:
42
- - [https://wandb.ai/openclimatefix/pvnet2.1/runs/vcwvqh07](https://wandb.ai/openclimatefix/pvnet2.1/runs/vcwvqh07)
43
-
44
-
45
- The training logs for all model runs of PVNet2 can be found [here](https://wandb.ai/openclimatefix/pvnet2.1).
46
 
47
- Some experimental notes can be found at in [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing)
48
 
49
 
50
  ### Hardware
 
9
 
10
 
11
 
12
+ # WindNet
13
 
14
  ## Model Description
15
 
16
  <!-- Provide a longer summary of what this model is/does. -->
17
+ This model class uses numerical weather predictions from providers such as ECMWF to forecast the wind power in North West India over the next 48 hours at 15 minute granularity. More information can be found in the model repo [1] and experimental notes [here](https://github.com/openclimatefix/PVNet/tree/main/experiments/india).
18
+
19
 
20
  - **Developed by:** openclimatefix
21
  - **Model type:** Fusion model
 
29
 
30
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
31
 
32
+ The model is trained on data from 2019-2022 and validated on data from 2022-2023. See experimental notes [here](https://github.com/openclimatefix/PVNet/tree/main/experiments/india)
33
 
34
 
35
  ### Preprocessing
36
 
37
+ Data is prepared with the `ocf_datapipes.training.windnet` datapipe [2].
38
 
39
 
40
  ## Results
41
 
42
  The training logs for the current model can be found here:
43
+ - [https://wandb.ai/openclimatefix/wind_mo_global/runs/21t9xqfn](https://wandb.ai/openclimatefix/wind_mo_global/runs/21t9xqfn)
 
 
 
44
 
 
45
 
46
 
47
  ### Hardware
config.json CHANGED
@@ -25,6 +25,15 @@
25
  "n_res_blocks": 3,
26
  "hidden_channels": 256,
27
  "image_size_pixels": 10
 
 
 
 
 
 
 
 
 
28
  }
29
  },
30
  "wind_encoder": {
@@ -46,21 +55,23 @@
46
  },
47
  "embedding_dim": 16,
48
  "include_sun": false,
49
- "include_time": true,
50
  "include_gsp_yield_history": false,
51
  "forecast_minutes": 2880,
52
  "history_minutes": 60,
53
  "nwp_history_minutes": {
54
  "ecmwf": 60,
55
- "gfs": 0
 
56
  },
57
  "nwp_forecast_minutes": {
58
  "ecmwf": 2880,
59
- "gfs": 2160
 
60
  },
61
  "nwp_interval_minutes": {
62
  "ecmwf": 60,
63
- "gfs": 180
 
64
  },
65
  "wind_history_minutes": 60,
66
  "wind_interval_minutes": 15,
@@ -70,8 +81,9 @@
70
  "lr": 0.0001,
71
  "weight_decay": 0.25,
72
  "amsgrad": true,
73
- "patience": 20,
74
- "factor": 0.2,
75
  "threshold": 0.002
76
- }
 
77
  }
 
25
  "n_res_blocks": 3,
26
  "hidden_channels": 256,
27
  "image_size_pixels": 10
28
+ },
29
+ "mo_global": {
30
+ "_target_": "pvnet.models.multimodal.encoders.encoders3d.ResConv3DNet2",
31
+ "_partial_": true,
32
+ "in_channels": 3,
33
+ "out_features": 256,
34
+ "n_res_blocks": 5,
35
+ "hidden_channels": 256,
36
+ "image_size_pixels": 50
37
  }
38
  },
39
  "wind_encoder": {
 
55
  },
56
  "embedding_dim": 16,
57
  "include_sun": false,
 
58
  "include_gsp_yield_history": false,
59
  "forecast_minutes": 2880,
60
  "history_minutes": 60,
61
  "nwp_history_minutes": {
62
  "ecmwf": 60,
63
+ "gfs": 0,
64
+ "mo_global": 60
65
  },
66
  "nwp_forecast_minutes": {
67
  "ecmwf": 2880,
68
+ "gfs": 2220,
69
+ "mo_global": 1860
70
  },
71
  "nwp_interval_minutes": {
72
  "ecmwf": 60,
73
+ "gfs": 180,
74
+ "mo_global": 60
75
  },
76
  "wind_history_minutes": 60,
77
  "wind_interval_minutes": 15,
 
81
  "lr": 0.0001,
82
  "weight_decay": 0.25,
83
  "amsgrad": true,
84
+ "patience": 5,
85
+ "factor": 0.1,
86
  "threshold": 0.002
87
+ },
88
+ "adapt_batches": true
89
  }
data_config.yaml CHANGED
@@ -12,6 +12,7 @@ input_data:
12
  - -360
13
  forecast_minutes: 2880.0
14
  history_minutes: 60
 
15
  nwp_channels:
16
  - t2m
17
  - prate
@@ -21,8 +22,8 @@ input_data:
21
  - v100
22
  - u200
23
  - v200
24
- nwp_image_size_pixels_height: 84
25
- nwp_image_size_pixels_width: 84
26
  nwp_provider: ecmwf
27
  nwp_zarr_path: PLACEHOLDER.zarr
28
  time_resolution_minutes: 60
@@ -44,6 +45,22 @@ input_data:
44
  nwp_provider: gfs
45
  nwp_zarr_path: PLACEHOLDER.zarr
46
  time_resolution_minutes: 180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  wind:
48
  n_wind_systems_per_example: 1
49
  time_resolution_minutes: 15
 
12
  - -360
13
  forecast_minutes: 2880.0
14
  history_minutes: 60
15
+ max_staleness_minutes: null
16
  nwp_channels:
17
  - t2m
18
  - prate
 
22
  - v100
23
  - u200
24
  - v200
25
+ nwp_image_size_pixels_height: 42
26
+ nwp_image_size_pixels_width: 42
27
  nwp_provider: ecmwf
28
  nwp_zarr_path: PLACEHOLDER.zarr
29
  time_resolution_minutes: 60
 
45
  nwp_provider: gfs
46
  nwp_zarr_path: PLACEHOLDER.zarr
47
  time_resolution_minutes: 180
48
+ mo_global:
49
+ dropout_fraction: 1.0
50
+ dropout_timedeltas_minutes:
51
+ - -180
52
+ forecast_minutes: 1860.0
53
+ history_minutes: 60
54
+ max_staleness_minutes: null
55
+ nwp_channels:
56
+ - temperature_sl
57
+ - wind_u_component_10m
58
+ - wind_v_component_10m
59
+ nwp_image_size_pixels_height: 50
60
+ nwp_image_size_pixels_width: 50
61
+ nwp_provider: mo_global
62
+ nwp_zarr_path: PLACEHOLDER.zarr
63
+ time_resolution_minutes: 60
64
  wind:
65
  n_wind_systems_per_example: 1
66
  time_resolution_minutes: 15
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:03a6939ccb9e34785422128a99e3af4e3722acc990b9fd02d338ce60fb35498c
3
- size 158160138
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06081decbb9a54acc2b0e5e4fceb12b2bc578f5a6956a279ee2b58906cbea3f8
3
+ size 237767722