|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" CpmBee model configuration""" |
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CPMBEE_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/resolve/main/config.json", |
|
"openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/resolve/main/config.json", |
|
"openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/resolve/main/config.json", |
|
"openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class CpmBeeConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CpmBeeModel`]. It is used to instbeeiate an |
|
CPMBee model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the CPMBee |
|
[openbmb/cpm-bee-10b](https://huggingface.co/openbmb/cpm-bee-10b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30720): |
|
Vocabulary size of the CPMBee model. Defines the number of different tokens that can be represented by the |
|
`input` passed when calling [`CpmBeeModel`]. |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the encoder layers. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads in the Transformer encoder. |
|
dim_head (`int`, *optional*, defaults to 128): |
|
Dimension of attention heads for each attention layer in the Transformer encoder. |
|
dim_ff (`int`, *optional*, defaults to 10240): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 48): |
|
Number of layers of the Transformer encoder. |
|
dropout_p (`float`, *optional*, defaults to 0.1): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder. |
|
position_bias_num_buckets (`int`, *optional*, defaults to 512): |
|
The number of position_bias buckets. |
|
position_bias_num_segment_buckets (`int`, *optional*, defaults to 32): |
|
The number of segment buckets. |
|
position_bias_max_distance (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
eps (`float`, *optional*, defaults to 1e-6): |
|
The epsilon used by the layer normalization layers. |
|
init_std (`float`, *optional*, defaults to 1.0): |
|
Initialize parameters with std = init_std. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether to use cache. |
|
distance_scale (`float` or `int`, *optional*, defaults to 16): |
|
Scale the rotary embedding. |
|
mask_modules (`list` or `tuple`, *optional*, defaults to None): |
|
Decides which feedforward block or attention block is pruned. |
|
half (`bool`, *optional*, defaults to `False`): |
|
Decides the model parameters are half-precision or not. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CpmBeeModel, CpmBeeConfig |
|
|
|
>>> # Initializing a CPMBee cpm-bee-10b style configuration |
|
>>> configuration = CpmBeeConfig() |
|
|
|
>>> # Initializing a model from the cpm-bee-10b style configuration |
|
>>> model = CpmBeeModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "cpmbee" |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 30720, |
|
hidden_size: int = 4096, |
|
num_attention_heads: int = 64, |
|
dim_head: int = 64, |
|
dim_ff: int = 10240, |
|
num_hidden_layers: int = 32, |
|
dropout_p: int = 0.0, |
|
position_bias_num_buckets: int = 256, |
|
position_bias_num_segment_buckets: int = 32, |
|
position_bias_max_distance: int = 2048, |
|
eps: int = 1e-6, |
|
init_std: float = 1.0, |
|
use_cache: bool = True, |
|
distance_scale: Union[int, float] = 16, |
|
mask_modules: Optional[Union[List, Tuple]] = None, |
|
half: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets |
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.dim_head = dim_head |
|
self.dim_ff = dim_ff |
|
self.num_hidden_layers = num_hidden_layers |
|
self.position_bias_num_buckets = position_bias_num_buckets |
|
self.position_bias_max_distance = position_bias_max_distance |
|
self.dropout_p = dropout_p |
|
self.eps = eps |
|
self.use_cache = use_cache |
|
self.vocab_size = vocab_size |
|
self.init_std = init_std |
|
self.distance_scale = distance_scale |
|
self.half = half |
|
self.mask_modules = mask_modules |
|
|