cpm-bee-1b / test_modeling_cpmbee.py
jeffreygo's picture
add source files
83e21b6
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CpmBee model. """
import unittest
from transformers.testing_utils import is_torch_available, require_torch, tooslow
from ...generation.test_utils import torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CpmBeeConfig,
CpmBeeForCausalLM,
CpmBeeModel,
CpmBeeTokenizer,
)
@require_torch
class CpmBeeModelTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=8,
is_training=True,
use_token_type_ids=False,
use_input_mask=False,
use_labels=False,
use_mc_token_ids=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=3,
num_attention_heads=4,
intermediate_size=37,
num_buckets=32,
max_distance=128,
position_bias_num_segment_buckets=32,
init_std=1.0,
return_dict=True,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.num_buckets = num_buckets
self.max_distance = max_distance
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
self.init_std = init_std
self.return_dict = return_dict
def prepare_config_and_inputs(self):
input_ids = {}
input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32)
input_ids["use_cache"] = False
config = self.get_config()
return (config, input_ids)
def get_config(self):
return CpmBeeConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
dim_ff=self.intermediate_size,
position_bias_num_buckets=self.num_buckets,
position_bias_max_distance=self.max_distance,
position_bias_num_segment_buckets=self.position_bias_num_segment_buckets,
use_cache=True,
init_std=self.init_std,
return_dict=self.return_dict,
)
def create_and_check_cpmbee_model(self, config, input_ids, *args):
model = CpmBeeModel(config=config)
model.to(torch_device)
model.eval()
hidden_states = model(**input_ids).last_hidden_state
self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size))
def create_and_check_lm_head_model(self, config, input_ids, *args):
model = CpmBeeForCausalLM(config)
model.to(torch_device)
input_ids["input_ids"] = input_ids["input_ids"].to(torch_device)
model.eval()
model_output = model(**input_ids)
self.parent.assertEqual(
model_output.logits.shape,
(self.batch_size, self.seq_length, config.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
@require_torch
class CpmBeeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (CpmBeeModel, CpmBeeForCausalLM) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": CpmBeeModel, "text-generation": CpmBeeForCausalLM} if is_torch_available() else {}
)
test_pruning = False
test_missing_keys = False
test_mismatched_shapes = False
test_head_masking = False
test_resize_embeddings = False
def setUp(self):
self.model_tester = CpmBeeModelTester(self)
self.config_tester = ConfigTester(self, config_class=CpmBeeConfig)
def test_config(self):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def test_inputs_embeds(self):
unittest.skip("CPMBee doesn't support input_embeds.")(self.test_inputs_embeds)
def test_retain_grad_hidden_states_attentions(self):
unittest.skip(
"CPMBee doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\
So is attentions. We strongly recommand you use loss to tune model."
)(self.test_retain_grad_hidden_states_attentions)
def test_cpmbee_model(self):
config, inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_cpmbee_model(config, inputs)
def test_cpmbee_lm_head_model(self):
config, inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(config, inputs)
@require_torch
class CpmBeeForCausalLMlIntegrationTest(unittest.TestCase):
@tooslow
def test_simple_generation(self):
texts = {"input": "今天天气不错,", "<ans>": ""}
model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
output_texts = model.generate(texts, tokenizer)
expected_output = {"input": "今天天气不错,", "<ans>": "适合睡觉。"}
self.assertEqual(expected_output["<ans>"], output_texts["<ans>"])