| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" MiniCPM model configuration""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class MiniCPMConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM | 
					
					
						
						| 
							 | 
						    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | 
					
					
						
						| 
							 | 
						    defaults will yield a similar configuration to that of the MiniCPM-7B. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 32000): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`MiniCPMModel`] | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 4096): | 
					
					
						
						| 
							 | 
						            Dimension of the hidden representations. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to 11008): | 
					
					
						
						| 
							 | 
						            Dimension of the MLP representations. | 
					
					
						
						| 
							 | 
						        num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer decoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer decoder. | 
					
					
						
						| 
							 | 
						        num_key_value_heads (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
					
						
						| 
							 | 
						            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
					
						
						| 
							 | 
						            by meanpooling all the original heads within that group. For more details checkout [this | 
					
					
						
						| 
							 | 
						            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
					
						
						| 
							 | 
						            `num_attention_heads`. | 
					
					
						
						| 
							 | 
						        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
					
						
						| 
							 | 
						            The non-linear activation function (function or string) in the decoder. | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens, | 
					
					
						
						| 
							 | 
						            MiniCPM 2 up to 4096, CodeMiniCPM up to 16384. | 
					
					
						
						| 
							 | 
						        initializer_range (`float`, *optional*, defaults to 0.02): | 
					
					
						
						| 
							 | 
						            The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
					
						
						| 
							 | 
						        rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
					
						
						| 
							 | 
						            The epsilon used by the rms normalization layers. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
					
						
						| 
							 | 
						            relevant if `config.is_decoder=True`. | 
					
					
						
						| 
							 | 
						        pad_token_id (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            Padding token id. | 
					
					
						
						| 
							 | 
						        bos_token_id (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            Beginning of stream token id. | 
					
					
						
						| 
							 | 
						        eos_token_id (`int`, *optional*, defaults to 2): | 
					
					
						
						| 
							 | 
						            End of stream token id. | 
					
					
						
						| 
							 | 
						        pretraining_tp (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | 
					
					
						
						| 
							 | 
						            document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | 
					
					
						
						| 
							 | 
						            necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | 
					
					
						
						| 
							 | 
						            issue](https://github.com/pytorch/pytorch/issues/76232). | 
					
					
						
						| 
							 | 
						        tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether to tie weight embeddings | 
					
					
						
						| 
							 | 
						        rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
					
						
						| 
							 | 
						            The base period of the RoPE embeddings. | 
					
					
						
						| 
							 | 
						        rope_scaling (`Dict`, *optional*): | 
					
					
						
						| 
							 | 
						            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | 
					
					
						
						| 
							 | 
						            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | 
					
					
						
						| 
							 | 
						            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | 
					
					
						
						| 
							 | 
						            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how | 
					
					
						
						| 
							 | 
						            these scaling strategies behave: | 
					
					
						
						| 
							 | 
						            https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | 
					
					
						
						| 
							 | 
						            experimental feature, subject to breaking API changes in future versions. | 
					
					
						
						| 
							 | 
						        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether to use a bias in the query, key, value and output projection layers during self-attention. | 
					
					
						
						| 
							 | 
						        attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    ```python | 
					
					
						
						| 
							 | 
						    >>> from transformers import MiniCPMModel, MiniCPMConfig | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a MiniCPM minicpm-7b style configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = MiniCPMConfig() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a model from the minicpm-7b style configuration | 
					
					
						
						| 
							 | 
						    >>> model = MiniCPMModel(configuration) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Accessing the model configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = model.config | 
					
					
						
						| 
							 | 
						    ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = 'minicpm' | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ['past_key_values'] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=32000, | 
					
					
						
						| 
							 | 
						        hidden_size=4096, | 
					
					
						
						| 
							 | 
						        intermediate_size=11008, | 
					
					
						
						| 
							 | 
						        num_hidden_layers=32, | 
					
					
						
						| 
							 | 
						        num_attention_heads=32, | 
					
					
						
						| 
							 | 
						        num_key_value_heads=None, | 
					
					
						
						| 
							 | 
						        hidden_act='silu', | 
					
					
						
						| 
							 | 
						        max_position_embeddings=2048, | 
					
					
						
						| 
							 | 
						        initializer_range=0.02, | 
					
					
						
						| 
							 | 
						        rms_norm_eps=1e-6, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        pad_token_id=None, | 
					
					
						
						| 
							 | 
						        bos_token_id=1, | 
					
					
						
						| 
							 | 
						        eos_token_id=2, | 
					
					
						
						| 
							 | 
						        pretraining_tp=1, | 
					
					
						
						| 
							 | 
						        tie_word_embeddings=True, | 
					
					
						
						| 
							 | 
						        rope_theta=10000.0, | 
					
					
						
						| 
							 | 
						        rope_scaling=None, | 
					
					
						
						| 
							 | 
						        attention_bias=False, | 
					
					
						
						| 
							 | 
						        attention_dropout=0.0, | 
					
					
						
						| 
							 | 
						        scale_emb=1, | 
					
					
						
						| 
							 | 
						        dim_model_base=1, | 
					
					
						
						| 
							 | 
						        scale_depth=1, | 
					
					
						
						| 
							 | 
						        mup_denominator=32, | 
					
					
						
						| 
							 | 
						        sparse_config=None, | 
					
					
						
						| 
							 | 
						        **kwargs): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.num_hidden_layers = num_hidden_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if num_key_value_heads is None: | 
					
					
						
						| 
							 | 
						            num_key_value_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.hidden_act = hidden_act | 
					
					
						
						| 
							 | 
						        self.initializer_range = initializer_range | 
					
					
						
						| 
							 | 
						        self.rms_norm_eps = rms_norm_eps | 
					
					
						
						| 
							 | 
						        self.pretraining_tp = pretraining_tp | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.rope_theta = rope_theta | 
					
					
						
						| 
							 | 
						        self.rope_scaling = rope_scaling | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.attention_bias = attention_bias | 
					
					
						
						| 
							 | 
						        self.attention_dropout = attention_dropout | 
					
					
						
						| 
							 | 
						        self.scale_emb = scale_emb | 
					
					
						
						| 
							 | 
						        self.dim_model_base = dim_model_base | 
					
					
						
						| 
							 | 
						        self.scale_depth = scale_depth | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.mup_denominator = mup_denominator | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.sparse_config = sparse_config | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            pad_token_id=pad_token_id, | 
					
					
						
						| 
							 | 
						            bos_token_id=bos_token_id, | 
					
					
						
						| 
							 | 
						            eos_token_id=eos_token_id, | 
					
					
						
						| 
							 | 
						            tie_word_embeddings=tie_word_embeddings, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            import flash_attn | 
					
					
						
						| 
							 | 
						            self._attn_implementation = 'flash_attention_2' | 
					
					
						
						| 
							 | 
						        except: | 
					
					
						
						| 
							 | 
						            pass | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _rope_scaling_validation(self): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Validate the `rope_scaling` configuration. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if self.rope_scaling is None: | 
					
					
						
						| 
							 | 
						            return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, ' | 
					
					
						
						| 
							 | 
						                f'got {self.rope_scaling}' | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        rope_scaling_type = self.rope_scaling.get('type', None) | 
					
					
						
						| 
							 | 
						        rope_scaling_factor = self.rope_scaling.get('factor', None) | 
					
					
						
						| 
							 | 
						        if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") | 
					
					
						
						| 
							 | 
						
 |