import sys | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import transformers | |
import torch | |
model = "openaccess-ai-collective/minotaur-mpt-7b" | |
tokenizer = AutoTokenizer.from_pretrained(model) | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
prompt = "".join([l for l in sys.stdin]).strip() | |
sequences = pipeline( | |
prompt, | |
max_length=2048, | |
do_sample=True, | |
top_k=40, | |
top_p=0.95, | |
temperature=1.0, | |
num_beams=10, | |
num_return_sequences=1, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
for seq in sequences: | |
print(f"Result: {seq['generated_text']}") | |