onsba's picture
End of training
1329dcf verified
|
raw
history blame
7.69 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased-finetuned-pfe-projectt
    results: []

distilbert-base-uncased-finetuned-pfe-projectt

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5126
  • Start Accuracy: 0.7021
  • End Accuracy: 0.6241
  • Overall Accuracy: 0.6631
  • Start Precision: 0.2862
  • End Precision: 0.1446
  • Start Recall: 0.3165
  • End Recall: 0.1961
  • Start F1 Score: 0.2802
  • End F1 Score: 0.1506

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Start Accuracy End Accuracy Overall Accuracy Start Precision End Precision Start Recall End Recall Start F1 Score End F1 Score
4.8235 1.0 17 3.6096 0.4752 0.4752 0.4752 0.0153 0.0140 0.0323 0.0294 0.0208 0.0189
2.5596 2.0 34 2.5775 0.4752 0.4752 0.4752 0.0153 0.0140 0.0323 0.0294 0.0208 0.0189
2.0949 3.0 51 2.2935 0.4752 0.4752 0.4752 0.0153 0.0140 0.0323 0.0294 0.0208 0.0189
1.9248 4.0 68 2.1906 0.4752 0.4752 0.4752 0.0153 0.0140 0.0323 0.0294 0.0208 0.0189
1.7309 5.0 85 2.0463 0.5674 0.4752 0.5213 0.0978 0.0140 0.1340 0.0294 0.1110 0.0189
1.5193 6.0 102 1.9047 0.5745 0.4823 0.5284 0.1116 0.0390 0.1544 0.0657 0.1240 0.0438
1.4401 7.0 119 1.8648 0.5532 0.5035 0.5284 0.0960 0.0686 0.1271 0.0858 0.1046 0.0676
1.3916 8.0 136 1.7904 0.6170 0.5532 0.5851 0.1673 0.0709 0.2090 0.1041 0.1800 0.0795
1.2498 9.0 153 1.8084 0.6170 0.5816 0.5993 0.1309 0.0862 0.1791 0.1145 0.1449 0.0930
1.1733 10.0 170 1.7518 0.6241 0.5957 0.6099 0.1586 0.0925 0.2032 0.1221 0.1712 0.0995
1.0563 11.0 187 1.6420 0.6241 0.5816 0.6028 0.1673 0.0918 0.2206 0.1337 0.1814 0.1047
1.0074 12.0 204 1.8142 0.6454 0.6099 0.6277 0.1453 0.0934 0.1737 0.1080 0.1497 0.0982
0.9473 13.0 221 1.6035 0.6738 0.6241 0.6489 0.2440 0.1010 0.2606 0.1444 0.2340 0.1138
0.9307 14.0 238 1.4999 0.6809 0.6241 0.6525 0.2226 0.1151 0.2484 0.1418 0.2225 0.1141
0.8668 15.0 255 1.5837 0.6950 0.6312 0.6631 0.2456 0.1033 0.2678 0.1520 0.2395 0.1162
0.8226 16.0 272 1.5517 0.6879 0.6312 0.6596 0.2741 0.1385 0.2911 0.1955 0.2523 0.1451
0.7358 17.0 289 1.5387 0.7092 0.6241 0.6667 0.3022 0.1374 0.3360 0.1898 0.2854 0.1424
0.7529 18.0 306 1.4644 0.6950 0.6383 0.6667 0.2554 0.1358 0.3011 0.1947 0.2531 0.1450
0.6962 19.0 323 1.5374 0.6809 0.6383 0.6596 0.2570 0.1419 0.2890 0.1861 0.2516 0.1502
0.6807 20.0 340 1.4873 0.6809 0.6383 0.6596 0.2577 0.1469 0.3058 0.1840 0.2623 0.1572
0.6988 21.0 357 1.5178 0.6667 0.6099 0.6383 0.2843 0.1558 0.3050 0.1982 0.2802 0.1597
0.6632 22.0 374 1.5319 0.7092 0.6312 0.6702 0.2860 0.1489 0.3053 0.2015 0.2788 0.1628
0.6081 23.0 391 1.5817 0.7021 0.6454 0.6738 0.2537 0.1767 0.2853 0.1944 0.2489 0.1677
0.5926 24.0 408 1.5514 0.6950 0.6241 0.6596 0.3069 0.1451 0.3160 0.1913 0.2937 0.1465
0.6449 25.0 425 1.5521 0.6950 0.6383 0.6667 0.2826 0.1687 0.3336 0.2133 0.2806 0.1654
0.5542 26.0 442 1.4860 0.7305 0.6383 0.6844 0.3305 0.1598 0.3734 0.1812 0.3257 0.1580
0.5668 27.0 459 1.5091 0.7092 0.6454 0.6773 0.3201 0.1688 0.3304 0.2075 0.2982 0.1670
0.5603 28.0 476 1.5088 0.7021 0.6454 0.6738 0.2819 0.1535 0.3165 0.2022 0.2772 0.1569
0.5353 29.0 493 1.5101 0.7021 0.6383 0.6702 0.2862 0.1447 0.3165 0.1968 0.2802 0.1494
0.5082 30.0 510 1.5126 0.7021 0.6241 0.6631 0.2862 0.1446 0.3165 0.1961 0.2802 0.1506

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2