Xenova's picture
Xenova HF staff
[Automated] Update base model metadata
53cc64a verified
metadata
base_model: pyannote/segmentation-3.0
library_name: transformers.js
license: mit

https://huggingface.co/pyannote/segmentation-3.0 with ONNX weights to be compatible with Transformers.js.

Transformers.js (v3) usage

import { AutoProcessor, AutoModelForAudioFrameClassification, read_audio } from '@xenova/transformers';

// Load model and processor
const model_id = 'onnx-community/pyannote-segmentation-3.0';
const model = await AutoModelForAudioFrameClassification.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);

// Read and preprocess audio
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/mlk.wav';
const audio = await read_audio(url, processor.feature_extractor.config.sampling_rate);
const inputs = await processor(audio);

// Run model with inputs
const { logits } = await model(inputs);
// {
//   logits: Tensor {
//     dims: [ 1, 767, 7 ],  // [batch_size, num_frames, num_classes]
//     type: 'float32',
//     data: Float32Array(5369) [ ... ],
//     size: 5369
//   }
// }

const result = processor.post_process_speaker_diarization(logits, audio.length);
// [
//   [
//     { id: 0, start: 0, end: 1.0512535626298245, confidence: 0.8220156481664611 },
//     { id: 2, start: 1.0512535626298245, end: 2.3398869619825127, confidence: 0.9008811707860472 },
//     ...
//   ]
// ]

// Display result
console.table(result[0], ['start', 'end', 'id', 'confidence']);
// β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
// β”‚ (index) β”‚ start              β”‚ end                β”‚ id β”‚ confidence          β”‚
// β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
// β”‚ 0       β”‚ 0                  β”‚ 1.0512535626298245 β”‚ 0  β”‚ 0.8220156481664611  β”‚
// β”‚ 1       β”‚ 1.0512535626298245 β”‚ 2.3398869619825127 β”‚ 2  β”‚ 0.9008811707860472  β”‚
// β”‚ 2       β”‚ 2.3398869619825127 β”‚ 3.5946089560890773 β”‚ 0  β”‚ 0.7521651315796233  β”‚
// β”‚ 3       β”‚ 3.5946089560890773 β”‚ 4.578039708226655  β”‚ 2  β”‚ 0.8491978128022479  β”‚
// β”‚ 4       β”‚ 4.578039708226655  β”‚ 4.594995410849717  β”‚ 0  β”‚ 0.2935352600416393  β”‚
// β”‚ 5       β”‚ 4.594995410849717  β”‚ 6.121008646925269  β”‚ 3  β”‚ 0.6788051309866024  β”‚
// β”‚ 6       β”‚ 6.121008646925269  β”‚ 6.256654267909762  β”‚ 0  β”‚ 0.37125512393851134 β”‚
// β”‚ 7       β”‚ 6.256654267909762  β”‚ 8.630452635138397  β”‚ 2  β”‚ 0.7467035186353542  β”‚
// β”‚ 8       β”‚ 8.630452635138397  β”‚ 10.088643060721703 β”‚ 0  β”‚ 0.7689364814666032  β”‚
// β”‚ 9       β”‚ 10.088643060721703 β”‚ 12.58113134631177  β”‚ 2  β”‚ 0.9123324509131324  β”‚
// β”‚ 10      β”‚ 12.58113134631177  β”‚ 13.005023911888312 β”‚ 0  β”‚ 0.4828358177572041  β”‚
// β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Torch β†’ ONNX conversion code:

# pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
import torch
from pyannote.audio import Model

model = Model.from_pretrained(
  "pyannote/segmentation-3.0", 
  use_auth_token="hf_...", # <-- Set your HF token here
).eval()

dummy_input = torch.zeros(2, 1, 160000)
torch.onnx.export(
    model,
    dummy_input,
    'model.onnx',
    do_constant_folding=True,
    input_names=["input_values"],
    output_names=["logits"],
    dynamic_axes={
        "input_values": {0: "batch_size", 1: "num_channels", 2: "num_samples"},
        "logits": {0: "batch_size", 1: "num_frames"},
    },
)

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using πŸ€— Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).